Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 19(6): e1011075, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37289841

ABSTRACT

Interactions between stressed organisms and their microbiome environments may provide new routes for understanding and controlling biological systems. However, microbiomes are a form of high-dimensional data, with thousands of taxa present in any given sample, which makes untangling the interaction between an organism and its microbial environment a challenge. Here we apply Latent Dirichlet Allocation (LDA), a technique for language modeling, which decomposes the microbial communities into a set of topics (non-mutually-exclusive sub-communities) that compactly represent the distribution of full communities. LDA provides a lens into the microbiome at broad and fine-grained taxonomic levels, which we show on two datasets. In the first dataset, from the literature, we show how LDA topics succinctly recapitulate many results from a previous study on diseased coral species. We then apply LDA to a new dataset of maize soil microbiomes under drought, and find a large number of significant associations between the microbiome topics and plant traits as well as associations between the microbiome and the experimental factors, e.g. watering level. This yields new information on the plant-microbial interactions in maize and shows that LDA technique is useful for studying the coupling between microbiomes and stressed organisms.


Subject(s)
Microbiota , Microbial Interactions , Phenotype
2.
Sensors (Basel) ; 21(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34883850

ABSTRACT

We describe the preparation and characterization of an aptamer-based electrochemical sensor to lung cancer tumor markers in human blood. The highly reproducible aptamer sensing layer with a high density (up to 70% coverage) on the gold electrode was made. Electrochemical methods and confocal laser scanning microscopy were used to study the stability of the aptamer layer structure and binding ability. A new blocking agent, a thiolated oligonucleotide with an unrelated sequence, was applied to fill the aptamer layer's defects. Electrochemical aptasensor signal processing was enhanced using deep learning and computer simulation of the experimental data array. It was found that the combinations (coupled and tripled) of cyclic voltammogram features allowed for distinguishing between the samples from lung cancer patients and healthy candidates with a mean accuracy of 0.73. The capacitive component from the non-Faradic electrochemical impedance spectroscopy data indicated the tumor marker's presence in a sample. These findings allowed for the creation of highly informative aptasensors for early lung cancer diagnostics.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Lung Neoplasms , Computer Simulation , Electrochemical Techniques , Electrodes , Gold , Humans , Lung Neoplasms/diagnosis
3.
Mol Phylogenet Evol ; 161: 107162, 2021 08.
Article in English | MEDLINE | ID: mdl-33831548

ABSTRACT

Species trees that can generate a nonmatching gene tree topology that is more probable than the topology matching the species tree are said to be in an anomaly zone. We introduce some heuristic approaches to infer whether species trees are in anomaly zones when it is difficult or impossible to compute the entire distribution of gene tree topologies. Here, probabilities of unrooted, unranked, and ranked gene tree topologies under the multispecies coalescent are used. A ranked tree can be viewed as an unranked tree with a temporal ordering of its internal nodes. Overall, considering probabilities of unrooted or unranked gene tree topologies within one nearest neighbor interchange from the species tree topology is a reasonable heuristic to infer the existence of anomalous unrooted or unranked gene trees, respectively. We investigated a test proposed by Linkem et al. (2016) which classifies a species tree as being in an unranked anomaly zone if there is a subset of four taxa in an unranked anomaly zone. We find this test to have high true positive rates, but it can also have high false positive rates. For ranked trees, because at least one of the most probable ranked gene tree topologies must have the same unranked topology as the species tree, we propose to use only those ranked gene trees that have topologies that match the unranked species tree topology. We find that the probability that the species tree is in unrooted and unranked anomaly zones tends to increase with the speciation rate, and the probability of all three types of anomaly zones increases rapidly with the number of taxa. We find that probabilities that species trees are in an anomaly zone can be quite high for moderately high speciation rates.


Subject(s)
Genetic Speciation , Heuristics , Models, Genetic , Phylogeny , Cluster Analysis , Probability
4.
Bioinformatics ; 36(18): 4819-4821, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32609371

ABSTRACT

SUMMARY: PRANC computes the Probabilities of RANked gene tree topologies under the multispecies coalescent. A ranked gene tree is a gene tree accounting for the temporal ordering of internal nodes. PRANC can also estimate the maximum likelihood (ML) species tree from a sample of ranked or unranked gene tree topologies. It estimates the ML tree with estimated branch lengths in coalescent units. AVAILABILITY AND IMPLEMENTATION: PRANC is written in C++ and freely available at github.com/anastasiiakim/PRANC. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Models, Genetic , Likelihood Functions , Phylogeny
5.
Mol Biol Evol ; 37(5): 1480-1494, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31860090

ABSTRACT

A labeled gene tree topology that is more probable than the labeled gene tree topology matching a species tree is called "anomalous." Species trees that can generate such anomalous gene trees are said to be in the "anomaly zone." Here, probabilities of "unranked" and "ranked" gene tree topologies under the multispecies coalescent are considered. A ranked tree depicts not only the topological relationship among gene lineages, as an unranked tree does, but also the sequence in which the lineages coalesce. In this article, we study how the parameters of a species tree simulated under a constant-rate birth-death process can affect the probability that the species tree lies in the anomaly zone. We find that with more than five taxa, it is possible for species trees to have both anomalous unranked and ranked gene trees. The probability of being in either type of anomaly zone increases with more taxa. The probability of anomalous gene trees also increases with higher speciation rates. We observe that the probabilities of unranked anomaly zones are higher and grow much faster than those of ranked anomaly zones as the speciation rate increases. Our simulation shows that the most probable ranked gene tree is likely to have the same unranked topology as the species tree. We design the software PRANC, which computes probabilities of ranked gene tree topologies given a species tree under the coalescent model.


Subject(s)
Models, Genetic , Phylogeny , Software , Computer Simulation , Proof of Concept Study
SELECTION OF CITATIONS
SEARCH DETAIL
...