Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Host Microbe ; 25(6): 789-802.e5, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31194939

ABSTRACT

Diet is a key determinant of human gut microbiome variation. However, the fine-scale relationships between daily food choices and human gut microbiome composition remain unexplored. Here, we used multivariate methods to integrate 24-h food records and fecal shotgun metagenomes from 34 healthy human subjects collected daily over 17 days. Microbiome composition depended on multiple days of dietary history and was more strongly associated with food choices than with conventional nutrient profiles, and daily microbial responses to diet were highly personalized. Data from two subjects consuming only meal replacement beverages suggest that a monotonous diet does not induce microbiome stability in humans, and instead, overall dietary diversity associates with microbiome stability. Our work provides key methodological insights for future diet-microbiome studies and suggests that food-based interventions seeking to modulate the gut microbiota may need to be tailored to the individual microbiome. Trial Registration: ClinicalTrials.gov: NCT03610477.


Subject(s)
Diet , Gastrointestinal Microbiome , Microbiota , Adult , Feces/microbiology , Female , Humans , Longitudinal Studies , Male , Metagenomics , Middle Aged , Young Adult
2.
Cell ; 175(4): 962-972.e10, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388453

ABSTRACT

Many US immigrant populations develop metabolic diseases post immigration, but the causes are not well understood. Although the microbiome plays a role in metabolic disease, there have been no studies measuring the effects of US immigration on the gut microbiome. We collected stool, dietary recalls, and anthropometrics from 514 Hmong and Karen individuals living in Thailand and the United States, including first- and second-generation immigrants and 19 Karen individuals sampled before and after immigration, as well as from 36 US-born European American individuals. Using 16S and deep shotgun metagenomic DNA sequencing, we found that migration from a non-Western country to the United States is associated with immediate loss of gut microbiome diversity and function in which US-associated strains and functions displace native strains and functions. These effects increase with duration of US residence and are compounded by obesity and across generations.


Subject(s)
Asian People , Emigration and Immigration , Gastrointestinal Microbiome , Adult , Bacteroides/isolation & purification , Dietary Fiber/metabolism , Emigrants and Immigrants , Humans , Metagenome , Obesity/epidemiology , Obesity/microbiology , Prevotella/isolation & purification , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...