Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Deliv ; 29(1): 328-341, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35040730

ABSTRACT

To prepare a topical formulation of bimatoprost (BIM) with high skin permeability, we designed a solvent mixture system composed of ethanol, diethylene glycol monoethyl ether, cyclomethicone, and butylated hydroxyanisole, serving as a volatile solvent, nonvolatile co-solvent, spreading agent, and antioxidant, respectively. The ideal topical BIM formulation (BIM-TF#5) exhibited 4.60-fold higher human skin flux and a 529% increase in dermal drug deposition compared to BIM in ethanol. In addition, compared to the other formulations, BIM-TF#5 maximally activated human dermal papilla cell proliferation at a concentration of 5 µM BIM, equivalent to 10 µM minoxidil. Moreover, BIM-TF#5 (0.3% [w/w] BIM) significantly promoted hair regrowth in the androgenic alopecia mouse model and increased the area covered by hair at 10 days by 585% compared to the vehicle-treated mice, indicating that entire telogen area transitioned into the anagen phase. Furthermore, at day 14, the hair weight of mice treated with BIM-TF#5 (5% [w/w] BIM) was 8.45- and 1.30-fold greater than in the 5% (w/w) BIM in ethanol and 5% (w/v) minoxidil treated groups, respectively. In the histological examination, the number and diameter of hair follicles in the deep subcutis were significantly increased in the BIM-TF#5 (0.3 or 5% [w/w] BIM)-treated mice compared to the mice treated with vehicle or 5% (w/w) BIM in ethanol. Thus, our findings suggest that BIM-TF#5 is an effective formulation to treat scalp alopecia, as part of a novel therapeutic approach involving direct prostamide F2α receptor-mediated stimulation of dermal papilla cells within hair follicles.


Subject(s)
Alopecia/pathology , Bimatoprost/pharmacology , Drug Delivery Systems , Hair Follicle/drug effects , Hair/drug effects , Administration, Topical , Animals , Antioxidants/chemistry , Bimatoprost/administration & dosage , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Male , Mice , Mice, Inbred C57BL , Minoxidil/pharmacology , Skin Absorption/drug effects , Skin Absorption/physiology , Solvents/chemistry
2.
Pharmaceutics ; 13(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925457

ABSTRACT

In this study, a stable and highly skin-permeable topical delivery system for itraconazole (ITZ) was designed to provide effective treatment against superficial mycosis. Herein, ITZ was incorporated into a solution composed of ethanol, benzyl alcohol, hydrochloric acid, Transcutol P, and cyclomethicone as a delivery vehicle, solubilizer, protonating agent, permeation enhancer, and spreading agent, respectively. At 72 h, the optimal topical ITZ formulation (ITZ-TF#11) exhibited 135% enhanced skin permeability, which led to increases in drug deposition in the stratum corneum, epidermis, and dermis of 479%, 739%, and 2024%, respectively, compared with the deposition of 1% ITZ in ethanol (control). Moreover, on day 7, ITZ-TF#11 demonstrated 2.09- and 2.30-fold enhanced nail flux and drug deposition, compared with the control. At a dose of 40 mg/kg/day, ITZ-TF#11 showed 323% greater lesion recovery, a 165% lower mean erythema severity score, and a 37% lower mean logarithm of viable fungal cells in skin in the treated area, compared with mice that received oral ITZ at the same dose. Overall, the findings imply that ITZ-TF#11 is a superior alternative to oral ITZ for treatment of superficial mycosis.

3.
Biomaterials ; 33(33): 8579-90, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22910220

ABSTRACT

This study was designed to develop a skin permeable recombinant low-molecular-weight protamine (LMWP) conjugated epidermal growth factor (EGF) (rLMWP-EGF) by linking a highly positive charged LMWP to the N-terminal of EGF through genetic recombination. We evaluated its biological activity, skin permeability, and wound healing efficacy in vivo. The cDNA for rLMWP-EGF was prepared by serial polymerase chain reaction for encoding amino acids of LMWP to the vector for EGF. After expression and purification, recombinant EGF site-specifically conjugated with LMWP was obtained. The in vitro cell proliferation activity was well preserved after LMWP conjugation and was comparable to that of rEGF. rLMWP-EGF showed markedly improved permeability through the three-dimensional artificial human skin constructs, and the cumulative permeation of rLMWP-EGF across the excised mouse skin was about 11 times higher than that of rEGF. Topically applied rLMWP-EGF significantly accelerated the wound closure rate in full thickness as well as a diabetic wound model most probably due to its enhanced skin permeation. These findings demonstrate the therapeutic potential of rLMWP-EGF as a new topical wound healing drug and the site-specific conjugation of LMWP to peptides or proteins by genetic recombination as a useful method for preparing highly effective biomedicines.


Subject(s)
Epidermal Growth Factor/chemistry , Epidermal Growth Factor/therapeutic use , Protamines/chemistry , Skin/drug effects , Skin/pathology , Wound Healing/drug effects , Animals , Humans , Immunohistochemistry , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...