Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36904393

ABSTRACT

We aimed to determine the relationship between surface chemistry and the rheological properties of silicon anode slurries in lithium-ion batteries. To accomplish this, we investigated the use of various binders such as PAA, CMC/SBR, and chitosan as a means to control particle aggregation and improve the flowability and homogeneity of the slurry. Additionally, we utilized zeta potential analysis to examine the electrostatic stability of the silicon particles in the presence of different binders, and the results indicated that the conformations of the binders on the silicon particles can be influenced by both neutralization and the pH conditions. Furthermore, we found that the zeta potential values served as a useful metric for evaluating binder adsorption and particle dispersion in the solution. We also conducted three-interval thixotropic tests (3ITTs) to examine the structural deformation and recovery characteristics of the slurry, and the results demonstrated that these properties vary depending on the strain intervals, pH conditions, and chosen binder. Overall, this study emphasized the importance of taking into account surface chemistry, neutralization, and pH conditions when assessing the rheological properties of the slurry and coating quality for lithium-ion batteries.

2.
Carbohydr Polym ; 300: 120262, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36372514

ABSTRACT

Cellulose nanofibrils (CNFs) have gained much attention as part of biocompatible soft hydrogels used in various biomedical applications such as biodegradable scaffolds, biomedicine, tissues, and regenerative medicine. The CNF hydrogels were mediated with metal cations for improved mechanical strength and structural reversibility. Intermolecular interactions in these CNF hydrogels are controlled by metal cation-carboxylate coordination bonding, leading to the creation of interconnected three-dimensional nanofibril structures that produce high structural reversibility. The nonlinear inter- and intra-cycle were investigated viscoelastic responses of these CNF hydrogels by quantitative nonlinear viscoelastic parameters and transient responses. The dynamic and transitional analyses conducted indicate that the structural deformation and recovery characteristics of the CNF hydrogels are affected by the valency number of the metal cations. This property can be carefully chosen to tune the intermolecular interactions between the cellulose nanofibrils to create an efficient interwoven network structure with high structural reversibility that can go through repeated cycles of reformation and yielding.


Subject(s)
Cellulose , Nanofibers , Cellulose/chemistry , Hydrogels/chemistry , Metals , Rheology , Carboxylic Acids , Cations/chemistry , Nanofibers/chemistry
3.
Nat Commun ; 13(1): 6608, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36329039

ABSTRACT

Slip length describes the classical no-slip boundary condition violation of Newtonian fluid mechanics, where fluids glide on the solid surfaces. Here, we propose a new analytical model validated by experiments for characterization of the liquid slip using vibrating solid surfaces. Essentially, we use a microfluidic system integrated with quartz crystal microbalance (QCM) to investigate the relationship between the slip and the mechanical response of a vibrating solid for a moving fluid. We discover a liquid slip that emerges especially at high flow rates, which is independent of the surface wetting condition, having significant contributions to the changes in resonant frequency of the vibrating solid and energy dissipation on its surface. Overall, our work will lead to consideration of 'missing slip' in the vibrating solid-liquid systems such as the QCM-based biosensing where traditionally frequency changes are interpreted exclusively with mass change on the sensor surface, irrespective of the flow conditions.

4.
Int J Mol Sci ; 19(1)2018 Jan 08.
Article in English | MEDLINE | ID: mdl-29316692

ABSTRACT

Cyprodinil (CYP) is a pyrimidine amine fungicide that has been extensively used in agricultural areas. 3,3'-Diindolylmethane (DIM) is a derivative of the dietary phytoestrogen, indole-3-carbinol (I3C), which is derived from cruciferous vegetables and considered to be a cancer-preventive phytonutrient agent. In this study, the effects of CYP and DIM were examined on the cell viability, invasion, and metastasis of human endometrial cancer cells, Ishikawa, via epithelial mesenchymal transition (EMT). CYP increased the level of cell viability of Ishikawa cells compared to DMSO as a control, as did E2. Ishikawa cells lost cell-to-cell contact and obtained a spindle-shaped or fibroblast-like morphology in response to the application of E2 or CYP by the cell morphology assay. In the cell migration and invasion assay, CYP enhanced the ability of migration and invasion of Ishikawa cells, as did E2. E2 and CYP increased the expressions of N-cadherin and Snail proteins, while decreasing the expression of E-cadherin protein as EMT-related markers. In addition, E2 and CYP increased the protein expressions of cathepsin D and MMP-9, metastasis-related markers. Conversely, CYP-induced EMT, cell migration, and invasion were reversed by fulvestrant (ICI 182,780) as an estrogen receptor (ER) antagonist, indicating that CYP exerts estrogenic activity by mediating these processes via an ER-dependent pathway. Similar to ICI 182,780, DIM significantly suppressed E2 and CYP-induced proliferation, EMT, migration, and invasion of Ishikawa cancer cells. Overall, the present study revealed that DIM has an antiestrogenic chemopreventive effect to withdraw the cancer-enhancing effect of E2 and CYP, while CYP has the capacity to enhance the metastatic potential of estrogen-responsive endometrial cancer.


Subject(s)
Anticarcinogenic Agents/pharmacology , Cell Movement , Epithelial-Mesenchymal Transition , Indoles/pharmacology , Receptors, Estrogen/metabolism , Cadherins/metabolism , Cell Line, Tumor , Cell Proliferation , Endometrium/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Female , Humans , Pyrimidines/toxicity , Snail Family Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...