Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 19(3): 1714-1719, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30469252

ABSTRACT

Copper metallization is a key issue for high performance thin film transistor technology. Hydrogen peroxide-based copper etchants are widely used in copper metallization. Recently, a hydrogen peroxide-based copper etchant for a copper/molybdenum double layer was investigated for its versatile use in both amorphous silicon TFTs and in metal-oxide TFTs. However, little is known about the etching mechanism for molybdenum and copper in a hydrogen peroxide solution containing fluorine ions. In this paper, it is shown that the amount of fluorine ions in the hydrogen peroxide-based copper etchant plays an important role in controlling the galvanic reaction between the copper and the molybdenum. A new mechanism of molybdenum dissolution in the presence of fluoride ions in 1.5 M hydrogen peroxide solution is suggested. The concentration of the fluoride ions is also important in eliminating the residue of molybdenum after wet patterning.

2.
J Nanosci Nanotechnol ; 15(10): 7770-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26726410

ABSTRACT

Molybdenum-tantalum alloy thin film is a suitable material for the higher corrosion resistance and low resistivity for gate and data metal lines. In this study, Mo-Ta alloy thin films were prepared by using a DC magnetron co-sputtering system on a glass substrate. An abrupt increase in the etching rates of low Mo-Ta alloys was observed. From the observed impedance analysis, the defect densities in the MoTa oxide films increased from 5.4 x 10(21) (cm(-3)) to 8.02 x 10(21) (cm(-3)) up to the 6 at% of tantalum level; and above the 6 at% of tantalum level, the defect densities decreased. This electrochemical behavior is explained by the mechanical instability of the MoTa oxide film.

3.
J Nanosci Nanotechnol ; 15(10): 7808-13, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26726418

ABSTRACT

The dissolution mechanisms of Cu thin film were studied with a focus on the effect of chlorine ion concentrations in mixture solutions of phosphoric and nitric acid. The dissolution behaviors of Cu thin film were investigated by using potentio-dynamic curves and impedance spectroscopy with varying chlorine ion concentrations. The copper dissolution rate decreased and as a result of this change, CuCl, salt films formed on the Cu surface in the presence of chlorine ions in the mixture solution. Such behavior was interpreted as being competitive adsorption between chlorine and nitrate ions on the copper surface. The passive oxide film on the Cu surface was further investigated in detail using X-ray photoelectron spectroscopy in both the absence and presence of differing chlorine ion concentrations.

4.
J Nanosci Nanotechnol ; 15(11): 8743-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26726588

ABSTRACT

NiCr, Mo, and Mo-N thin copper diffusion barrier films are deposited on 200 um thick polyimide films spin-coated on glass substrates by dc reactive magnetron sputtering. The adhesion forces for three systems are measured by micro-scratch test analysis depending on oxygen plasma pretreatment, sputtering power density, moisture contents, and post annealing treatment. The values of adhesion forces for the three systems are linearly proportional to the oxygen plasma treatment time. As deposition power density increases, measured adhesion forces also increase. The existence of moisture adsorbed in the polymer substrate prior to initiating the sputtering process significantly reduces the adhesion force for all systems. Post annealing treatment at 150 degrees C for 12 hours after sputtering also deteriorates the adhesion between the barrier films and polymer substrate. Auger electron spectroscopy reveals that adhesion forces are significantly dependent on the types of compounds formed at the barrier layer/polymer interface. Changes in the adhesion properties of the MoN system as a function of the nitrogen content are explained in terms of the mechanical stability of the MoN(x)O(y) interface layer on the polymer substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...