Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38257639

ABSTRACT

This Special Issue is a collection of selected papers from the 10th and 11th International Conferences on Green and Human Information Technology (ICGHITs) [...].

2.
Sensors (Basel) ; 23(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36772450

ABSTRACT

The named data networking (NDN)-based microservice-centric in-network computation poses various challenges in terms of interest aggregation and pending interest table (PIT) lifetime management. A same-named microservice-centric interest packet may have a different number of input parameters with nonidentical input values. In addition, the same-named interest packet with the same number of parameters may have different corresponding parameter values. The vanilla NDN request aggregation (based on the interest name, while ignoring the input parameters count and/or their corresponding values) may result in false aggregation. Moreover, the microservice-centric requested computations may fail to accomplish in the default 4s PIT timer due to the input size. To address these challenges, this paper presents MIA-NDN: microservice-centric interest aggregation in named data networking. We designed microservice-centric interest-naming to enable name-based communication. MIA-NDN develops a robust interest aggregation mechanism that not only performs the interest aggregation based on the interest name but also considers the input parameter counts and their corresponding values in the interest aggregation process to avoid false packet aggregations. A dynamic PIT timer mechanism based on input size was devised that avoids the PIT entry losses if the execution time exceeds the default PIT timer value to avoid computation losses and uphold the application quality of service (QoS). Extensive software-based simulations confirm that the MIA-NDN outperforms the benchmark scheme in terms of microservice-centric interest aggregation, microservice satisfaction rate, and communication overhead.

3.
Sensors (Basel) ; 22(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36501799

ABSTRACT

The Internet of medical things (IoMT) provides an ecosystem in which to connect humans, devices, sensors, and systems and improve healthcare services through modern technologies. The IoMT has been around for quite some time, and many architectures/systems have been proposed to exploit its true potential. Healthcare through the Internet of things (IoT) is envisioned to be efficient, accessible, and secure in all possible ways. Even though the personalized health service through IoT is not limited to time or location, many associated challenges have emerged at an exponential pace. With the rapid shift toward IoT-enabled healthcare systems, there is an extensive need to examine possible threats and propose countermeasures. Authentication is one of the key processes in a system's security, where an individual, device, or another system is validated for its identity. This survey explores authentication techniques proposed for IoT-enabled healthcare systems. The exploration of the literature is categorized with respect to the technology deployment region, as in cloud, fog, and edge. A taxonomy of attacks, comprehensive analysis, and comparison of existing authentication techniques opens up possible future directions and paves the road ahead.


Subject(s)
Ecosystem , Internet of Things , Humans , Internet , Technology , Delivery of Health Care
4.
Sensors (Basel) ; 22(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35336439

ABSTRACT

Despite the benefits of smart grids, concerns about security and privacy arise when a large number of heterogeneous devices communicate via a public network. A novel privacy-preserving method for smart grid-based home area networks (HAN) is proposed in this research. To aggregate data from diverse household appliances, the proposed approach uses homomorphic Paillier encryption, Chinese remainder theorem, and one-way hash function. The privacy in Internet of things (IoT)-enabled smart homes is one of the major concerns of the research community. In the proposed scheme, the sink node not only aggregates the data but also enables the early detection of false data injection and replay attacks. According to the security analysis, the proposed approach offers adequate security. The smart grid distributes power and facilitates a two-way communications channel that leads to transparency and developing trust.


Subject(s)
Internet of Things , Privacy , Algorithms , Communication , Computer Security
5.
Sensors (Basel) ; 22(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35214251

ABSTRACT

In many smart devices and numerous digital applications, authentication mechanisms are widely used to validate the legitimacy of users' identification. As a result of the increased use of mobile devices, most people tend to save sensitive and secret information over such devices. Personal Identification Number (PIN)-based and alphanumeric passwords are simple to remember, but at the same time, they are vulnerable to hackers. Being difficult to guess and more user-friendly, graphical passwords have grown in popularity as an alternative to all such textual passwords. This paper describes an innovative, hybrid, and much more robust user authentication approach, named GRA-PIN (GRAphical and PIN-based), which combines the merits of both graphical and pin-based techniques. The feature of simple arithmetic operations (addition and subtraction) is incorporated in the proposed scheme, through which random passwords are generated for each login attempt. In the study, we have conducted a comparative study between the GRA-PIN scheme with existing PIN-based and pattern-based (swipe-based) authentications approaches using the standard Software Usability Scale (SUS). The usability score of GRA-PIN was analyzed to be as high as 94%, indicating that it is more reliable and user friendly. Furthermore, the security of the proposed scheme was challenged through an experiment wherein three different attackers, having a complete understanding of the proposed scheme, attempted to crack the technique via shoulder surfing, guessing, and camera attack, but they were unsuccessful.


Subject(s)
Sports , Telemedicine , Computer Security , Computers, Handheld , Confidentiality , Humans , Shoulder , Software
6.
Sensors (Basel) ; 21(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34770672

ABSTRACT

Vehicular Ad hoc Network (VANET) is a modern concept that enables network nodes to communicate and disseminate information. VANET is a heterogeneous network, due to which the VANET environment exposes to have various security and privacy challenges. In the future, the automobile industry will progress towards assembling electric vehicles containing energy storage batteries employing these resources to travel as an alternative to gasoline/petroleum. These vehicles may have the capability to share their energy resources upon the request of vehicles having limited energy resources. In this article, we have proposed a trust management-based secure energy sharing mechanism, named vTrust, which computes the trust degree of nodes to authenticate nodes. The proposed mechanism is a multi-leveled centralized approach utilizing both the infrastructure and vehicles to sustain a secure environment. The proposed vTrust can aggregate and propagate the degree of trust to enhance scalability. The node that requests to obtain the energy resources may have to maintain a specified level of trust threshold for earning resources. We have also evaluated the performance of the proposed mechanism against several existing approaches and determine that the proposed mechanism can efficiently manage a secure environment during resource sharing by maintaining average malicious nodes detection of 91.3% and average successful energy sharing rate of 89.5%, which is significantly higher in comparison to the existing approaches.

7.
Sensors (Basel) ; 21(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34372421

ABSTRACT

Recent years have witnessed the huge popularity of Information-Centric Networking (ICN) and its realization as Named Data Networking (NDN) in the context of wireless sensor networks (WSNs). The participating nodes in WSNs are usually equipped with a single radio interface. The existing solutions lack in providing the efficient next forwarder selection in NDN-based single radio WSNs. In this work, we propose a collaborative Interest and Data Forwarding (CIDF-WSN) Strategy for Named Data Wireless Sensor Networks. CIDF-WSN develop a Neighbor Information Base (NFIB) which enables the node to select the optimal next-hop relay in Interest packet forwarding. An efficient Interest packet processing mechanism assisted by the Interest Cache Table (ICT) is provided to avoid Interest packets loss and frequent re-transmissions. In addition, CIDF-WSN also provides a robust Data packet transfer mechanism accompanied by the Temp Cache Table (TCT) to avoid Data packet losses and to ensure well-timed content delivery. Simulation results reveal that CIDF-WSN outperforms the recently published works in terms of Interest satisfaction rate, total energy consumption, Data retrieval delays, and communication overhead.


Subject(s)
Computer Communication Networks , Wireless Technology , Communication , Computer Simulation , Humans , Physical Phenomena
8.
Sensors (Basel) ; 21(14)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34300371

ABSTRACT

Vehicular ad-hoc network (VANET) is a technology that allows ubiquitous mobility to mobile users. Inter-vehicle communication is an integral component of intelligent transportation systems that enables a wide variety of applications where vehicles interact and cooperate with each other, from safety applications to non-safety applications. VANETs applications have different needs (e.g., latency, reliability, delivery priorities, etc.) in terms of delivery effectiveness. In the last decade, named data networking (NDN) gained the attention of the research community for effective content retrieval and dissemination in mobile environments such as VANETs. In NDN, the content's name has a vital role in storing and retrieving the content effectively and efficiently. In NDN-based VANETs, adaptive content dissemination solutions must be introduced that can make decisions related to forwarding, cache management, etc., based on context information represented by a content name. In this context, our main contributions are two-fold: (i) we present the hierarchical context-aware content-naming (CACN) scheme for NDN-based VANETs that enables naming the safety and non-safety applications, and (ii) we present a decentralized context-aware notification (DCN) protocol that broadcasts event notification information for awareness within the application-based geographical area. Simulation results show that the proposed DCN protocol succeeds in achieving reduced transmissions, bandwidth, and energy compared to existing critical contents dissemination protocols.


Subject(s)
Computer Communication Networks , Wireless Technology , Communication , Computer Simulation , Reproducibility of Results
9.
Sensors (Basel) ; 20(15)2020 Jul 26.
Article in English | MEDLINE | ID: mdl-32722610

ABSTRACT

The participating nodes in Wireless Sensor Networks (WSNs) are usually resource-constrained in terms of energy consumption, storage capacity, computational capability, and communication range. Energy is one of the major constraints which requires an efficient mechanism that takes into account the energy consumption of nodes to prolong the network lifetime. Particularly in the large scale heterogeneous WSNs, this challenge becomes more critical due to high data collection rate and increased number of transmissions. To this end, clustering is one of the most popular mechanisms which is being used to minimize the energy consumption of nodes and prolong the lifetime of the network. In this paper, therefore, we propose a robust clustering mechanism for energy optimization in heterogeneous WSNs. In the proposed scheme, nodes declare themselves as cluster head (CH) based on available resources such as residual energy, available storage and computational capability. The proposed scheme employs the multi criteria decision making technique named as Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) which allows the child nodes to select the optimal CH among several potential CH candidates. Moreover, we also propose mechanisms such as CH-acquaintanceship and CH-friendship in order to prolong the network lifetime. Simulation results show that our proposed scheme minimizes the control overhead, reduces the power consumption and enhances overall lifetime of the network by comparing with the most recent and relevant proposed protocol for WSNs.

10.
Sensors (Basel) ; 19(18)2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31500096

ABSTRACT

The International Conference on Green and Human Information Technology (ICGHIT) is an international conference focusing on green and information technologies oriented toward humanity [...].

11.
Sensors (Basel) ; 19(14)2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31295830

ABSTRACT

By design, Named Data Networking (NDN) supports pull-based traffic, where content is retrieved only upon consumer request. However, some of the use cases (i.e., emergency situations) in the Internet of Things (IoT) requires push-based traffic, where a producer broadcasts the data based on the emergency situation without any consumer request. Therefore, it is necessary to modify the existing NDN forwarding engine when designing for an IoT scenario. Although solutions are provided to enable push-based traffic in IoT, the main solutions in the current literature lack data broadcast control design. Moreover, the existing solutions use an additional interest messages exchange, which creates extra overheads in the network, thereby resulting in higher delay and lower throughput. In this paper, therefore, we propose a name-based push-data broadcast control scheme for IoT systems, and consider two scenarios, i.e., smart buildings and vehicular networks. The proposed scheme consists of a robust content namespace design, device namespace design, and minor amendments to the data packet format and unsolicited data policy of the forwarding engine as well. The evaluation is carried out for both scenarios. Simulation experiments show that the proposed scheme outperforms the recent proposed schemes in terms of total number of data packets processed in the network, total energy consumption, and average delay in the network by varying the number of data packets per 2 s and varying vehicle speed.

12.
Sensors (Basel) ; 19(13)2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31262089

ABSTRACT

Information-Centric Networking (ICN) is a paradigm shift from host-to-host Internet Protocol (IP)-based communication to content-based communication. In ICN, the content-retrieval process employs names that are given through different naming schemes such as hierarchical, flat, attribute, and hybrid. Among different ICN architectures, Named-Data Networking (NDN) has gained much interest in the research community and is actively being explored for the Internet of Things (IoT) and sensor networks, and follows a hierarchical naming format. NDN protocol follows a pull-based communication model where the content consumer gets content irrespective of the location of the content provider. The content provider in NDN and sensor networks can be considered to be a distributed database that monitors or controls the environment and caches the sensed data or controls information into their memory. The proposed Name-INtegrated Query (NINQ) framework for NDN-based IoT provides a flexible, expressive, and secure query mechanism that supports content retrieval as well as control and configuration command exchange among various nodes in a smart building. Different use cases are presented in this paper that expand on the behavior of proposed query framework in different scenarios. Simulation results of data collection and exchange of control commands show that proposed query framework significantly improves Interest Satisfaction Rate (ISR), Command Satisfaction Rate (CSR), energy efficiency, and average delay. Moreover, it is evident from the simulation results that proposed query framework significantly reduces the number of transmissions in the network in both data collection and exchange of control command scenarios, which improves the network performance.

13.
Sensors (Basel) ; 18(11)2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30445723

ABSTRACT

Information Centric Network (ICN) is expected to be the favorable deployable future Internet paradigm. ICN intends to replace the current IP-based model with the name-based content-centric model, as it aims at providing better security, scalability, and content distribution. However, it is a challenging task to conceive how ICN can be linked with the other most emerging paradigm, i.e., Vehicular Ad hoc Network (VANET). In this article, we present an overview of the ICN-based VANET approach in line with its contributions and research challenges.In addition, the connectivity issues of vehicular ICN model is presented with some other emerging paradigms, such as Software Defined Network (SDN), Cloud, and Edge computing. Moreover, some ICN-based VANET research opportunities, in terms of security, mobility, routing, naming, caching, and fifth generation (5G) communications, are also covered at the end of the paper.

14.
Sensors (Basel) ; 18(9)2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30149582

ABSTRACT

The use of the Internet is growing in this day and age, so another area has developed to use the Internet, called Internet of Things (IoT). It facilitates the machines and objects to communicate, compute and coordinate with each other. It is an enabler for the intelligence affixed to several essential features of the modern world, such as homes, hospitals, buildings, transports and cities. The security and privacy are some of the critical issues related to the wide application of IoT. Therefore, these issues prevent the wide adoption of the IoT. In this paper, we are presenting an overview about different layered architectures of IoT and attacks regarding security from the perspective of layers. In addition, a review of mechanisms that provide solutions to these issues is presented with their limitations. Furthermore, we have suggested a new secure layered architecture of IoT to overcome these issues.

15.
Sensors (Basel) ; 17(4)2017 Mar 27.
Article in English | MEDLINE | ID: mdl-28346377

ABSTRACT

This paper investigates the impact of using directional antennas and beamforming schemes on the connectivity of cognitive radio ad hoc networks (CRAHNs). Specifically, considering that secondary users use two kinds of directional antennas, i.e., uniform linear array (ULA) and uniform circular array (UCA) antennas, and two different beamforming schemes, i.e., randomized beamforming and center-directed to communicate with each other, we study the connectivity of all combination pairs of directional antennas and beamforming schemes and compare their performances to those of omnidirectional antennas. The results obtained in this paper show that, compared with omnidirectional transmission, beamforming transmission only benefits the connectivity when the density of secondary user is moderate. Moreover, the combination of UCA and randomized beamforming scheme gives the highest path connectivity in all evaluating scenarios. Finally, the number of antenna elements and degree of path loss greatly affect path connectivity in CRAHNs.

16.
Sensors (Basel) ; 16(5)2016 05 14.
Article in English | MEDLINE | ID: mdl-27187414

ABSTRACT

A new generation of wireless sensor networks that harvest energy from environmental sources such as solar, vibration, and thermoelectric to power sensor nodes is emerging to solve the problem of energy limitation. Based on the photo-voltaic model, this research proposes a stability-aware geographic routing for reliable data transmissions in energy-harvesting wireless sensor networks (EH-WSNs) to provide a reliable routes selection method and potentially achieve an unlimited network lifetime. Specifically, the influences of link quality, represented by the estimated packet reception rate, on network performance is investigated. Simulation results show that the proposed method outperforms an energy-harvesting-aware method in terms of energy consumption, the average number of hops, and the packet delivery ratio.

SELECTION OF CITATIONS
SEARCH DETAIL
...