Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Immune Netw ; 23(4): e33, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37670807

ABSTRACT

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been acknowledged as an effective mean of preventing infection and hospitalization. However, the emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) has led to substantial increase in infections among children and adolescents. Vaccine-induced immunity and longevity have not been well defined in this population. Therefore, we aimed to analyze humoral and cellular immune responses against ancestral and SARS-CoV-2 variants after two shots of the BNT162b2 vaccine in healthy adolescents. Although vaccination induced a robust increase of spike-specific binding Abs and neutralizing Abs against the ancestral and SARS-CoV-2 variants, the neutralizing activity against the Omicron variant was significantly low. On the contrary, vaccine-induced memory CD4+ T cells exhibited substantial responses against both ancestral and Omicron spike proteins. Notably, CD4+ T cell responses against both ancestral and Omicron strains were preserved at 3 months after two shots of the BNT162b2 vaccine without waning. Polyfunctionality of vaccine-induced memory T cells was also preserved in response to Omicron spike protein. The present findings characterize the protective immunity of vaccination for adolescents in the era of continuous emergence of variants/subvariants.

2.
ACS Nano ; 17(6): 6011-6022, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36926824

ABSTRACT

Cryogenic electron microscopy (cryo-EM) has become a widely used tool for determining the protein structure. Despite recent technical advances, sample preparation remains a major bottleneck for several reasons, including protein denaturation at the air-water interface, the presence of preferred orientations, nonuniform ice layers, etc. Graphene, a two-dimensional allotrope of carbon consisting of a single atomic layer, has recently gained attention as a near-ideal support film for cryo-EM that can overcome these challenges because of its superior properties, including mechanical strength and electrical conductivity. Here, we introduce a reliable, easily implemented, and reproducible method to produce 36 graphene-coated grids within 1.5 days. To demonstrate their practical application, we determined the cryo-EM structure of Methylococcus capsulatus soluble methane monooxygenase hydroxylase (sMMOH) at resolutions of 2.9 and 2.5 Å using Quantifoil and graphene-coated grids, respectively. We found that the graphene-coated grid has several advantages, including a smaller amount of protein required and avoiding protein denaturation at the air-water interface. By comparing the cryo-EM structure of sMMOH with its crystal structure, we identified subtle yet significant geometrical changes at the nonheme diiron center, which may better indicate the active site configuration of sMMOH in the resting/oxidized state.


Subject(s)
Graphite , Methylococcus capsulatus , Graphite/chemistry , Cryoelectron Microscopy/methods , Water , Proteins
3.
Int J Mol Sci ; 24(3)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36769108

ABSTRACT

This study aimed to identify a distant-recurrence image biomarker in NSCLC by investigating correlations between heterogeneity functional gene expression and fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET) image features of NSCLC patients. RNA-sequencing data and 18F-FDG PET images of 53 patients with NSCLC (19 with distant recurrence and 34 without recurrence) from The Cancer Imaging Archive and The Cancer Genome Atlas Program databases were used in a combined analysis. Weighted correlation network analysis was performed to identify gene groups related to distant recurrence. Genes were selected for functions related to distant recurrence. In total, 47 image features were extracted from PET images as radiomics. The relationship between gene expression and image features was estimated using a hypergeometric distribution test with the Pearson correlation method. The distant recurrence prediction model was validated by a random forest (RF) algorithm using image texture features and related gene expression. In total, 37 gene modules were identified by gene-expression pattern with weighted gene co-expression network analysis. The gene modules with the highest significance were selected (p-value < 0.05). Nine genes with high protein-protein interaction and area under the curve (AUC) were identified as hub genes involved in the proliferation function, which plays an important role in distant recurrence of cancer. Four image features (GLRLM_SRHGE, GLRLM_HGRE, SUVmean, and GLZLM_GLNU) and six genes were identified to be correlated (p-value < 0.1). AUCs (accuracy: 0.59, AUC: 0.729) from the 47 image texture features and AUCs (accuracy: 0.767, AUC: 0.808) from hub genes were calculated using the RF algorithm. AUCs (accuracy: 0.783, AUC: 0.912) from the four image texture features and six correlated genes and AUCs (accuracy: 0.738, AUC: 0.779) from only the four image texture features were calculated using the RF algorithm. The four image texture features validated by heterogeneity group gene expression were found to be related to cancer heterogeneity. The identification of these image texture features demonstrated that advanced prediction of NSCLC distant recurrence is possible using the image biomarker.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Fluorodeoxyglucose F18 , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Positron Emission Tomography Computed Tomography/methods , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/genetics , Biomarkers , Cell Proliferation , Retrospective Studies
4.
J Biol Chem ; 298(4): 101793, 2022 04.
Article in English | MEDLINE | ID: mdl-35248533

ABSTRACT

Atmospheric-pressure plasmas have been widely applied for surface modification and biomedical treatment because of their ability to generate highly reactive radicals and charged particles. In negative-stain electron microscopy (Neg-EM) and cryogenic electron microscopy (cryo-EM), plasmas have been used to generate hydrophilic surfaces and eliminate surface contaminants to embed specimens onto grids. In addition, plasma treatment is a prerequisite for negative-stain and Quantifoil grids, whose surfaces are coated with hydrophobic amorphous carbon. Although the conventional glow discharge system has been used successfully in this purpose, there has been no further effort to take an advantage from the recent progress in the plasma field. Here, we developed a nonthermal atmospheric plasma jet system as an alternative tool for treatment of surfaces. The low-temperature plasma is a nonequilibrium system that has been widely used in biomedical area. Unlike conventional glow discharge systems, the plasma jet system successfully cleans and introduces hydrophilicity on the grid surface in the ambient environment without a vacuum. Therefore, we anticipate that the plasma jet system will have numerous benefits, such as convenience and versatility, as well as having potential applications in surface modification for both negative-stain and cryo-EM grid treatment.


Subject(s)
Cryoelectron Microscopy , Cold Temperature , Cryoelectron Microscopy/instrumentation , Vacuum
5.
Diagnostics (Basel) ; 11(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34829324

ABSTRACT

We compared the accuracy of prediction of the response to neoadjuvant chemotherapy (NAC) in osteosarcoma patients between machine learning approaches of whole tumor utilizing fluorine-18fluorodeoxyglucose (18F-FDG) uptake heterogeneity features and a convolutional neural network of the intratumor image region. In 105 patients with osteosarcoma, 18F-FDG positron emission tomography/computed tomography (PET/CT) images were acquired before (baseline PET0) and after NAC (PET1). Patients were divided into responders and non-responders about neoadjuvant chemotherapy. Quantitative 18F-FDG heterogeneity features were calculated using LIFEX version 4.0. Receiver operating characteristic (ROC) curve analysis of 18F-FDG uptake heterogeneity features was used to predict the response to NAC. Machine learning algorithms and 2-dimensional convolutional neural network (2D CNN) deep learning networks were estimated for predicting NAC response with the baseline PET0 images of the 105 patients. ML was performed using the entire tumor image. The accuracy of the 2D CNN prediction model was evaluated using total tumor slices, the center 20 slices, the center 10 slices, and center slice. A total number of 80 patients was used for k-fold validation by five groups with 16 patients. The CNN network test accuracy estimation was performed using 25 patients. The areas under the ROC curves (AUCs) for baseline PET maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG), metabolic tumor volume (MTV), and gray level size zone matrix (GLSZM) were 0.532, 0.507, 0.510, and 0.626, respectively. The texture features test accuracy of machine learning by random forest and support vector machine were 0.55 and 0. 54, respectively. The k-fold validation accuracy and validation accuracy were 0.968 ± 0.01 and 0.610 ± 0.04, respectively. The test accuracy of total tumor slices, the center 20 slices, center 10 slices, and center slices were 0.625, 0.616, 0.628, and 0.760, respectively. The prediction model for NAC response with baseline PET0 texture features machine learning estimated a poor outcome, but the 2D CNN network using 18F-FDG baseline PET0 images could predict the treatment response before prior chemotherapy in osteosarcoma. Additionally, using the 2D CNN prediction model using a tumor center slice of 18F-FDG PET images before NAC can help decide whether to perform NAC to treat osteosarcoma patients.

6.
Diagnostics (Basel) ; 11(11)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34829485

ABSTRACT

Motion estimation and compensation are necessary for improvement of tumor quantification analysis in positron emission tomography (PET) images. The aim of this study was to propose adaptive PET imaging with internal motion estimation and correction using regional artificial evaluation of tumors injected with low-dose and high-dose radiopharmaceuticals. In order to assess internal motion, molecular sieves imitating tumors were loaded with 18F and inserted into the lung and liver regions in rats. All models were classified into two groups, based on the injected radiopharmaceutical activity, to compare the effect of tumor intensity. The PET study was performed with injection of F-18 fluorodeoxyglucose (18F-FDG). Respiratory gating was carried out by external trigger device. Count, signal to noise ratio (SNR), contrast and full width at half maximum (FWHM) were measured in artificial tumors in gated images. Motion correction was executed by affine transformation with estimated internal motion data. Monitoring data were different from estimated motion. Contrast in the low-activity group was 3.57, 4.08 and 6.19, while in the high-activity group it was 10.01, 8.36 and 6.97 for static, 4 bin and 8 bin images, respectively. The results of the lung target in 4 bin and the liver target in 8 bin showed improvement in FWHM and contrast with sufficient SNR. After motion correction, FWHM was improved in both regions (lung: 24.56%, liver: 10.77%). Moreover, with the low dose of radiopharmaceuticals the PET image visualized specific accumulated radiopharmaceutical areas in the liver. Therefore, low activity in PET images should undergo motion correction before quantification analysis using PET data. We could improve quantitative tumor evaluation by considering organ region and tumor intensity.

7.
Int J Mol Sci ; 22(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34360705

ABSTRACT

Human adipose-derived stem cells (hADSCs) are types of mesenchymal stem cells (MSCs) that have been used as tissue engineering models for bone, cartilage, muscle, marrow stroma, tendon, fat and other connective tissues. Tissue regeneration materials composed of hADSCs have the potential to play an important role in reconstituting damaged tissue or diseased mesenchymal tissue. In this study, we assessed and investigated the osteogenesis of hADSCs in both two-dimensional (2D) and three-dimensional (3D) culture conditions. We confirmed that the hADSCs successfully differentiated into bone tissues by ARS staining and quantitative RT-PCR. To gain insight into the detailed biological difference between the two culture conditions, we profiled the overall gene expression by analyzing the whole transcriptome sequencing data using various bioinformatic methods. We profiled the overall gene expression through RNA-Seq and further analyzed this using various bioinformatic methods. During differential gene expression testing, significant differences in the gene expressions between hADSCs cultured in 2D and 3D conditions were observed. The genes related to skeletal development, bone development and bone remodeling processes were overexpressed in the 3D culture condition as compared to the 2D culture condition. In summary, our RNA-Seq-based study proves effective in providing new insights that contribute toward achieving a genome-wide understanding of gene regulation in mesenchymal stem cell osteogenic differentiation and bone tissue regeneration within the 3D culture system.


Subject(s)
Adipose Tissue/metabolism , Cell Culture Techniques , Osteogenesis , RNA-Seq , Stem Cells/metabolism , Adipose Tissue/cytology , Humans , Stem Cells/cytology
8.
Cancers (Basel) ; 13(11)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071614

ABSTRACT

Chemotherapy response and metastasis prediction play important roles in the treatment of pediatric osteosarcoma, which is prone to metastasis and has a high mortality rate. This study aimed to estimate the prediction model using gene expression and image texture features. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images of 52 pediatric osteosarcoma patients were used to estimate the machine learning algorithm. An appropriate algorithm was selected by estimating the machine learning accuracy. 18F-FDG PET/CT images of 21 patients were selected for prediction model development based on simultaneous KI67 and EZRIN expression. The prediction model for chemotherapy response and metastasis was estimated using area under the curve (AUC) maximum image texture features (AUC_max) and gene expression. The machine learning algorithm with the highest test accuracy in chemotherapy response and metastasis was selected using the random forest algorithm. The chemotherapy response and metastasis test accuracy with image texture features was 0.83 and 0.76, respectively. The highest test accuracy and AUC of chemotherapy response with AUC_max, KI67, and EZRIN were estimated to be 0.85 and 0.89, respectively. The highest test accuracy and AUC of metastasis with AUC_max, KI67, and EZRIN were estimated to be 0.85 and 0.8, respectively. The metastasis prediction accuracy increased by 10% using radiogenomics data.

9.
Biochemistry ; 59(46): 4470-4480, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33136372

ABSTRACT

Peptidoglycan is a vital component of the bacterial cell wall, and its dynamic remodeling by NlpC/p60 hydrolases is crucial for proper cell division and survival. Beyond these essential functions, we previously discovered that Enterococcus species express and secrete the NlpC/p60 hydrolase-secreted antigen A (SagA), whose catalytic activity can modulate host immune responses in animal models. However, the localization and peptidoglycan hydrolase activity of SagA in Enterococcus was still unclear. In this study, we show that SagA contributes to a triseptal structure in dividing cells of enterococci and localizes to sites of cell division through its N-terminal coiled-coil domain. Using molecular modeling and site-directed mutagenesis, we identify amino acid residues within the SagA-NlpC/p60 domain that are crucial for catalytic activity and potential substrate binding. Notably, these studies revealed that SagA may function via a catalytic Cys-His dyad instead of the predicted Cys-His-His triad, which is conserved in SagA orthologs from other Enterococcus species. Our results provide key additional insight into peptidoglycan remodeling in Enterococcus by SagA NlpC/p60 hydrolases.


Subject(s)
Bacterial Proteins/metabolism , Enterococcus/metabolism , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Bacterial Proteins/genetics , Catalytic Domain , Cell Division , Enterococcus/cytology , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Molecular Docking Simulation , Mutagenesis, Site-Directed , N-Acetylmuramoyl-L-alanine Amidase/genetics , Peptidoglycan/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Structure-Activity Relationship
10.
Sensors (Basel) ; 20(10)2020 May 17.
Article in English | MEDLINE | ID: mdl-32429530

ABSTRACT

The size of a device and its adaptability to human properties are important factors in developing a wearable device. In wearable robot research, therefore, soft materials and tendon transmissions have been utilized to make robots compact and adaptable to the human body. However, when used for wearable robots, these methods sometimes cause uncertainties that originate from elongation of the soft material or from undefined human properties. In this research, to consider these uncertainties, we propose a data-driven method that identifies both kinematic and stiffness parameters using tension and wire stroke of the actuators. Through kinematic identification, a method is proposed to find the exact joint position as a function of the joint angle. Through stiffness identification, the relationship between the actuation force and the joint angle is obtained using Gaussian Process Regression (GPR). As a result, by applying the proposed method to a specific robot, the research outlined in this paper verifies how the proposed method can be used in wearable robot applications. This work examines a novel wearable robot named Exo-Index, which assists a human's index finger through the use of three actuators. The proposed identification methods enable control of the wearable robot to result in appropriate postures for grasping objects of different shapes and sizes.


Subject(s)
Robotics , Tendons/physiology , Wearable Electronic Devices , Hand , Humans
11.
Methods Enzymol ; 638: 109-127, 2020.
Article in English | MEDLINE | ID: mdl-32416909

ABSTRACT

The NlpC/p60-family of peptidoglycan hydrolases are key enzymes that facilitate bacterial cell division and also modulate microbe-host interactions. These endopeptidases utilize conserved Cys-His residues in their active site and are expressed in most bacterial species as well as some eukaryotes. Here we describe methods for biochemical analysis of Enterococcus faecium SagA-NlpC/p60 peptidoglycan hydrolase activity (Kim et al., 2019; Rangan et al., 2016), which includes recombinant protein preparation and biochemical analysis using both gel-based and LC-MS profiling of peptidoglycan fragments. These protocols should also facilitate the biochemical analysis of other NlpC/p60 peptidoglycan hydrolases.


Subject(s)
N-Acetylmuramoyl-L-alanine Amidase , Peptidoglycan , Bacterial Proteins/genetics , Catalytic Domain , Cell Wall/metabolism , Crystallography, X-Ray , N-Acetylmuramoyl-L-alanine Amidase/genetics , N-Acetylmuramoyl-L-alanine Amidase/metabolism
12.
Bioorg Med Chem ; 28(9): 115440, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32205046

ABSTRACT

A chip-based screening system for IκB kinase ß (IKKß) has been developed by physically immobilizing the substrate IκBα on a glass matrix using a calixarene linker. Phosphorylation of IκBα by IKKß and ATP was quantitated using a fluorescently labeled antibody. Using this efficient assay system a chemical library of 2000 bioactive compounds was screened against IKKß and four were identified as good inhibitors, namely, aurintricarboxylic acid, diosmin, ellagic acid, and hematein. None of them have been reported to be an inhibitor of IKKß although they were implicated in various NFκB-mediated biological processes. Our enzyme-based assay showed that IC50 of the four inhibitors is comparable with that of IKK-16, a previously known strong inhibitor. Molecular docking simulation shows that the hydrophobic moiety of an inhibitor interacts with the four hydrophobic residues (Leu21, Val29, Val152, and Ile165) of the active site. The MM-PBSA calculation suggests that these hydrophobic interactions appear to be the predominant contributor to the binding free energy. As IKKß is ubiquitously expressed in various cell types and executes many biological functions, the enzyme and cell specificity of the four inhibitors need to be rigorously tested before accepted as a drug candidate.


Subject(s)
I-kappa B Kinase/antagonists & inhibitors , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Drug Evaluation, Preclinical , Humans , I-kappa B Kinase/metabolism , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Thermodynamics
13.
Elife ; 82019 04 10.
Article in English | MEDLINE | ID: mdl-30969170

ABSTRACT

We discovered that Enterococcus faecium (E. faecium), a ubiquitous commensal bacterium, and its secreted peptidoglycan hydrolase (SagA) were sufficient to enhance intestinal barrier function and pathogen tolerance, but the precise biochemical mechanism was unknown. Here we show E. faecium has unique peptidoglycan composition and remodeling activity through SagA, which generates smaller muropeptides that more effectively activates nucleotide-binding oligomerization domain-containing protein 2 (NOD2) in mammalian cells. Our structural and biochemical studies show that SagA is a NlpC/p60-endopeptidase that preferentially hydrolyzes crosslinked Lys-type peptidoglycan fragments. SagA secretion and NlpC/p60-endopeptidase activity was required for enhancing probiotic bacteria activity against Clostridium difficile pathogenesis in vivo. Our results demonstrate that the peptidoglycan composition and hydrolase activity of specific microbiota species can activate host immune pathways and enhance tolerance to pathogens.


Subject(s)
Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Enterococcus faecium/enzymology , Enterococcus faecium/immunology , N-Acetylmuramoyl-L-alanine Amidase/chemistry , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Crystallography, X-Ray , HEK293 Cells , Humans , Nod2 Signaling Adaptor Protein/metabolism , Peptidoglycan/metabolism , Protein Conformation
14.
J Environ Manage ; 239: 66-72, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30889519

ABSTRACT

This study presents a promising approach that enhances the sludge fermentation by using basic oxygen furnace (BOF) slag as an alkaline source for the first time. BOF slag added to the reactors could maintain a stable alkaline condition due to continuous release of Ca(OH)2 from slag. The reactor pH could be adjusted to a target value by the choice of the BOF slag dose. Concentrations of soluble chemical oxygen demand (sCOD) and short-chain carboxylates (SCCs) were substantially increased in the presence of BOF slag. At a BOF slag mass to sludge volume ratio of 1/10 g slag/L sludge, the reactor pH was maintained at 10 and the concentration of SCCs produced was the highest (i.e., 3510 mg COD L-1 from 14,000 mg VS L-1 of sludge mixture), followed by B/S ratios of 1/20, 1.50, 1/5, and 1/2.5 g slag L-1 sludge with reactor pH of 9.4, 8.9, 10.5, and 11, respectively. Our data suggest that the pH value that best facilitates the degradation of sludge into SCCs and inhibit the conversion of SCCs into biogas is around 10. Interestingly, compositions of the accumulated SCCs varied greatly depending on the BOF slag dose. BOF slag showed phosphorus removal ability due to enhanced precipitation of Ca-PO43--P complexes, which significantly lowered PO43- concentration of the reactor effluent.


Subject(s)
Oxygen , Phosphates , Fermentation , Phosphorus , Sewage
15.
Biochem Biophys Res Commun ; 498(3): 609-615, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29524413

ABSTRACT

Heme oxygenase-1 (HO-1) has been implicated in tumor progression, but the underlying molecular mechanisms remain largely unknown. Transforming growth factor-ß1 (TGF-ß1) exhibits cytostatic and apoptotic effects in hepatocytes and several types of hepatocellular carcinoma (HCC) cell lines, and deregulation of its signaling pathway is linked to hepatic tumorigenesis. In the present study, we observed that HO-1 is expressed at higher levels in HCC tissues than in paired normal tissues. Moreover, TGF-ß1-induced cell cycle arrest and up-regulation of cyclin-dependent kinase inhibitors in HCC cell lines were significantly attenuated by overexpression of HO-1 or treatment with tricarbonyldichlororuthenium(II) dimer ([Ru(CO)3Cl2]2, suggesting an inhibitory role of the HO-1/CO axis in TGF-ß signaling to growth inhibition in HCC cell lines. Interestingly, we observed that [Ru(CO)3Cl2]2 inhibits TGF-ß1-induced Smad3-dependent reporter activity without affecting its C-terminus phosphorylation, complex formation with Smad4, and nuclear translocation. Additional experiments revealed that HO-1/CO axis selectively induces phosphorylation of Smad3 at Thr-179 residue in the linker region through activation of extracellular signal-activated kinase (ERK) 1/2. Transfection with a phospho-deficient Smad3 (T179A) mutant or treatment with FR180204, a specific inhibitor for ERK1/2, significantly reversed the inhibitory effects of HO-1 and [Ru(CO)3Cl2]2 on cell cycle arrest induced by TGF-ß1. These findings for the first time demonstrate that HO-1/CO axis confer resistance of HCC cells to TGF-ß growth inhibitory signal by increasing Smad3 phosphorylation at Thr-179 via ERK1/2 pathway.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Signal Transduction , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism , Carbon Monoxide/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Heme Oxygenase-1/metabolism , Humans , Liver Neoplasms/pathology , MAP Kinase Signaling System , Phosphorylation
16.
Bioresour Technol ; 245(Pt A): 590-597, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28910646

ABSTRACT

The aim of this work was to study the effect of the differential development of microbe-substrate aggregates at different mixing intensities on the performance of anaerobic digestion of rice straw. Batch and semi-continuous reactors were operated for up to 50 and 300days, respectively, under different mixing intensities. In both batch and semi-continuous reactors, minimal mixing conditions exhibited maximum methane production and lignocellulose biodegradability, which both had strong correlations with the development of microbe-substrate aggregates. The results implied that the aggregated microorganisms on the particulate substrate played a key role in rice straw hydrolysis, determining the performance of anaerobic digestion. Increasing the mixing speed from 50 to 150rpm significantly reduced the methane production rate by disintegrating the microbe-substrate aggregates in the semi-continuous reactor. A temporary stress of high-speed mixing fundamentally affected the microbial communities, increasing the possibility of chronic reactor failure.


Subject(s)
Bioreactors , Methane , Oryza , Anaerobiosis , Digestion , Hydrolysis
17.
Eur J Pharmacol ; 801: 86-94, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28286125

ABSTRACT

n-Propyl gallate is a synthetic phenolic antioxidant with potential anti-inflammatory effects. However, the underlying mechanism remains largely unknown. In the present study, we showed that n-propyl gallate increases the expression and activity of the heme oxygenase-1 (HO-1), a stress-inducible protein with potent anti-inflammatory activity, in RAW264.7 macrophages. The inhibition of the HO-1 activity by treatment with zinc (II) protoporphyrin IX (ZnPP) or by knockdown of the HO-1 expression with small interference RNA significantly reversed the inhibitory effect of n-Propyl gallate on activations of nuclear factor-κB (NF-κB) and inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide (LPS). An additional mechanism study using inhibitors of signaling kinases revealed the involvement of protein kinase Cδ (PKCδ) in the expression of HO-1 induced by n-Propyl gallate. Consistent with these results, n-Propyl gallate increased the intracellular levels of phosphorylated PKCδ in concentration- and time-dependent manners. The inhibitory effects of n-Propyl gallate on LPS-induced iNOS expression and nitric oxide production were also significantly attenuated by pretreatment with the PKCδ inhibitor, rottlerin, or by transfection with PKCδ (K376R), a kinase-inactive form of PKCδ. Taken together, these findings provide the first evidence that n-Propyl gallate exerts its anti-inflammatory effect through PKCδ-mediated up-regulation of HO-1 in macrophages.


Subject(s)
Heme Oxygenase-1/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Nitric Oxide Synthase Type II/metabolism , Propyl Gallate/pharmacology , Protein Kinase C-delta/metabolism , Up-Regulation/drug effects , Animals , Enzyme Activation/drug effects , Macrophages/metabolism , Mice , NF-kappa B/metabolism , Nitric Oxide/biosynthesis , RAW 264.7 Cells
18.
J Neuroeng Rehabil ; 14(1): 15, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28222759

ABSTRACT

BACKGROUND: Although various hand assist devices have been commercialized for people with paralysis, they are somewhat limited in terms of tool fixation and device attachment method. Hand exoskeleton robots allow users to grasp a wider range of tools but are heavy, complicated, and bulky owing to the presence of numerous actuators and controllers. The GRIPIT hand assist device overcomes the limitations of both conventional devices and exoskeleton robots by providing improved tool fixation and device attachment in a lightweight and compact device. GRIPIT has been designed to assist tripod grasp for people with spinal cord injury because this grasp posture is frequently used in school and offices for such activities as writing and grasping small objects. METHODS: The main development objective of GRIPIT is to assist users to grasp tools with their own hand using a lightweight, compact assistive device that is manually operated via a single wire. GRIPIT consists of only a glove, a wire, and a small structure that maintains tendon tension to permit a stable grasp. The tendon routing points are designed to apply force to the thumb, index finger, and middle finger to form a tripod grasp. A tension-maintenance structure sustains the grasp posture with appropriate tension. Following device development, four people with spinal cord injury were recruited to verify the writing performance of GRIPIT compared to the performance of a conventional penholder and handwriting. Writing was chosen as the assessment task because it requires a tripod grasp, which is one of the main performance objectives of GRIPIT. RESULTS: New assessment, which includes six different writing tasks, was devised to measure writing ability from various viewpoints including both qualitative and quantitative methods, while most conventional assessments include only qualitative methods or simple time measuring assessments. Appearance, portability, difficulty of wearing, difficulty of grasping the subject, writing sensation, fatigability, and legibility were measured to assess qualitative performance while writing various words and sentences. Results showed that GRIPIT is relatively complicated to wear and use compared to a conventional assist device but has advantages for writing sensation, fatigability, and legibility because it affords sufficient grasp force during writing. Two quantitative performance factors were assessed, accuracy of writing and solidity of writing. To assess accuracy of writing, we asked subjects to draw various figures under given conditions. To assess solidity of writing, pen tip force and the angle variation of the pen were measured. Quantitative evaluation results showed that GRIPIT helps users to write accurately without pen shakes even high force is applied on the pen. CONCLUSIONS: Qualitative and quantitative results were better when subjects used GRIPIT than when they used the conventional penholder, mainly because GRIPIT allowed them to exert a higher grasp force. Grasp force is important because disabled people cannot control their fingers and thus need to move their entire arm to write, while non-disabled people only need to move their fingers to write. The tension-maintenance structure developed for GRIPIT provides appropriate grasp force and moment balance on the user's hand, but the other writing method only fixes the pen using friction force or requires the user's arm to generate a grasp force.


Subject(s)
Exoskeleton Device , Self-Help Devices , Spinal Cord Injuries/rehabilitation , Adult , Hand , Hand Strength , Handwriting , Humans , Male
19.
Environ Sci Pollut Res Int ; 24(9): 8479-8488, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28190228

ABSTRACT

This study investigated the effect of chemical forms of arsenic (As) and soil-magnetite mixing regimes on As mass transfer in magnetite-amended soil. Two soil samples with different component ratios of As chemical forms were prepared. In the absence of magnetite, the amount of desorbable As was strongly dependent on the fraction of easily extractable As in soil. Contact of the soils with magnetite in a slurry phase significantly reduced soil As concentration for both soils. Changes in As concentrations in soil, magnetite, and water by the slurry phase contact were simulated using an As mass transfer model. The model parameters were determined independently for each process of As soil desorption and magnetite sorption. The experimentally measured As mass transfer from soil to magnetite was significantly greater than the simulation result. By sequential extraction, it was observed that the soil As concentration was significantly reduced not only for easily extractable As, but also for relatively strongly bound forms of As. Enclosing the magnetite in a dialysis bag substantially limited the As mass transfer from soil to magnetite. These results suggest that improving the mixture between Fe oxides and soils can facilitate the effectiveness of As stabilization using Fe oxides.


Subject(s)
Arsenic , Soil , Ferrosoferric Oxide , Oxides , Soil Pollutants
20.
Biotechnol Bioeng ; 114(4): 903-914, 2017 04.
Article in English | MEDLINE | ID: mdl-27775170

ABSTRACT

The in vitro generation of cell-based three dimensional (3D) nerve tissue is an attractive subject to improve graft survival and integration into host tissue for neural tissue regeneration or to model biological events in stem cell differentiation. Although 3D organotypic culture strategies are well established for 3D nerve tissue formation of pluripotent stem cells to study underlying biology in nerve development, cell-based nerve tissues have not been developed using human postnatal stem cells with therapeutic potential. Here, we established a culture strategy for the generation of in vitro cell-based 3D nerve tissue from postnatal stem cells from apical papilla (SCAPs) of teeth, which originate from neural crest-derived ectomesenchyme cells. A stem cell population capable of differentiating into neural cell lineages was generated during the ex vivo expansion of SCAPs in the presence of EGF and bFGF, and SCAPs differentiated into neural cells, showing neural cell lineage-related molecular and gene expression profiles, morphological changes and electrophysical property under neural-inductive culture conditions. Moreover, we showed the first evidence that 3D cell-based nerve-like tissue with axons and myelin structures could be generated from SCAPs via 3D organotypic culture using an integrated bioprocess composed of polyethylene glycol (PEG) microwell-mediated cell spheroid formation and subsequent dynamic culture in a high aspect ratio vessel (HARV) bioreactor. In conclusion, the culture strategy in our study provides a novel approach to develop in vitro engineered nerve tissue using SCAPs and a foundation to study biological events in the neural differentiation of postnatal stem cells. Biotechnol. Bioeng. 2017;114: 903-914. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bioreactors , Dental Papilla/cytology , Nerve Tissue/cytology , Stem Cells/cytology , Stem Cells/physiology , Tissue Engineering/methods , Adolescent , Cell Differentiation , Child , Humans , Molar/cytology , Spheroids, Cellular/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...