Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Theranostics ; 12(18): 7668-7680, 2022.
Article in English | MEDLINE | ID: mdl-36451854

ABSTRACT

Rationale: Neuroinflammation is a primary feature of Alzheimer's disease (AD), for which an increasing number of drugs have been specifically developed. The present study aimed to define the therapeutic impact of a specific subpopulation of T cells that can suppress excessive inflammation in various immune and inflammatory disorders, namely, CD4+CD25+Foxp3+ regulatory T cells (Tregs). Methods: To generate Aß antigen-specific Tregs (Aß+ Tregs), Aß 1-42 peptide was applied in vivo and subsequent in vitro splenocyte culture. After isolating Tregs by magnetic bead based purification method, Aß+ Tregs were adoptively transferred into 3xTg-AD mice via tail vein injection. Therapeutic efficacy was confirmed with behavior test, Western blot, quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry staining (IHC). In vitro suppression assay was performed to evaluate the suppressive activity of Aß+ Tregs using flow cytometry. Thy1.1+ Treg trafficking and distribution was analyzed to explore the infused Tregs migration into specific organs in an antigen-driven manner in AD mice. We further assessed cerebral glucose metabolism using 18F-FDG-PET, an imaging approach for AD biological definition. Subsequently, we evaluated the migration of Aß+ Tregs toward Aß activated microglia using live cell imaging, chemotaxis, antibody blocking and migration assay. Results: We showed that Aß-stimulated Tregs inhibited microglial proinflammatory activity and modulated the microglial phenotype via bystander suppression. Single adoptive transfer of Aß+ Tregs was enough to induce amelioration of cognitive impairments, Aß accumulation, hyper-phosphorylation of tau, and neuroinflammation during AD pathology. Moreover, Aß-specific Tregs effectively inhibited inflammation in primary microglia induced by Aß exposure. It may indicate bystander suppression in which Aß-specific Tregs promote immune tolerance by secreting cytokines to modulate immune responses during neurodegeneration. Conclusions: The administration of Aß antigen-specific regulatory T cells may represent a new cellular therapeutic strategy for AD that acts by modulating the inflammatory status in AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Animals , Mice , Alzheimer Disease/therapy , T-Lymphocytes, Regulatory , Amyloid beta-Peptides , Inflammation/therapy
2.
South Asian J Cancer ; 11(4): 361-369, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36756098

ABSTRACT

Supriya MallickIntroduction Malignant gliomas are the most common primary malignant brain tumors and are typically treated with maximal safe surgical resection followed by chemoradiation. One of the unintended effects of radiation is depletion of circulating lymphocyte pool, which has been correlated with inferior overall survival outcomes. Methods A comprehensive and systematic searches of the PubMed, Cochrane Central, and Embase databases were done to assess the studies that have reported radiation-related lymphopenia in high-grade gliomas. Hazard ratios (HRs), odds ratios (OR), and mean differences were represented with Forest plots comparing patients with severe lymphopenia and no severe lymphopenia. Review Manager Version 5.3 (The Nordic Cochrane Centre, Copenhagen, Denmark) was used for the analysis. Results Nineteen studies were included in the final systematic review and 12 studies were included in the meta-analysis. The odds of developing severe lymphopenia were 0.39 (95% CI:0.19, 0.81, I 2 = 94%, p = 0.01). Patients with severe lymphopenia were at increased risk of death with a pooled HR = 2.19 (95% CI: 1.70, 2.83, I 2 = 0%, p <0.00001) compared to patients with no severe lymphopenia. The mean difference in survival between patients with severe lymphopenia and no severe lymphopenia was -6.72 months (95% CI: -8.95, -4.49, I 2 = 99%, p <0.00001), with a better mean survival in the no severe lymphopenia group. Conclusion Radiation-induced severe lymphopenia was associated with poor overall survival and increased risk of death. Photon therapy, larger planning target volume, higher brain dose, higher hypothalamus dose, and female gender were associated with increased risk of severe lymphopenia.

3.
Rev Sci Instrum ; 90(8): 084101, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31472648

ABSTRACT

Until now, a swim-up or microchip-based method has been mainly utilized for separating normal sperm for use in assisted reproductive technology. However, it requires excessive sorting time due to preprocessing and collects a limited number of motile sperms. To improve this process, we propose a gravity-fed high motility sperm sorting device that utilizes the rheotaxis of sperm, which minimizes separation time and improves throughput. The device features a mesoscale microfluidic channel to maximize the throughput, and an outlet at the bottom is configured to control the fluid velocity in the channel by using gravity. To control and automate semen injection and suction of the sorted sperm, a pipette controller using a cam was fabricated. After constructing the system, a sorting experiment was performed using canine semen to confirm the separation efficiency. After injecting the semen in the channel, the delay time between injection and suction was measured and the relative improvement of the index of motility was investigated according to measured delay time. As a result of repeated experiments, it was confirmed that the highest improvement was obtained at a delay time of 80 s, and the mean velocity, %motility, MI, and motile sperm rates were improved by 8.94%, 32.58%, 35.48%, and 21.99%, respectively.

4.
Surg Endosc ; 33(1): 322-332, 2019 01.
Article in English | MEDLINE | ID: mdl-30039341

ABSTRACT

BACKGROUND: At present, the colonoscopy is the most common method of screening for colorectal cancer. However, endoscopists still encounter difficulties with intubation, primarily due to the structural diversity (e.g., path, shape, and size) and viscoelasticity of the colon. Therefore, well-trained, skillful operators are required to overcome these factors and operate colonoscopes without harming patients. OBJECTIVES: In our previous work, we presented a reel mechanism-based robotic colonoscope designed to mitigate the difficulties of conventional colonoscopies. Although we reported excellent mobile performance with respect to the robot, we did not provide an in-depth discussion concerning patient safety. Therefore, in this article, we propose a method of improving robot safety, and this is verified by investigating the static and dynamic forces acting on the colon. In addition, the maneuverability and safety of the robot in the in vitro condition are evaluated. METHODS: The safety solution is provided by covering the robot's legs with silicone. To evaluate the results, the reaction force according to leg deformation is measured. Then, the force transmitted to the colon is also measured when the robot moves through various environments. Finally, a mobility test on an excised porcine colon is performed to simultaneously verify the robot's maneuverability and safety. RESULTS: We verify that the static and dynamic force acting on the colon is less than the burst force of a human colon. In addition, the maneuverability of the robotic colonoscope shows reliable locomotion performance even with the soft material covering the legs; it has forward velocities of 9.552 ± 1.940 mm/s on a flat path. CONCLUSION: Owing to the reliable locomotion mechanism with the safety-securing silicone, the robot achieves high and reliable maneuverability without any scratches or perforations to the porcine colon.


Subject(s)
Colonic Neoplasms/diagnosis , Colonoscopes , Colonoscopy/methods , Robotic Surgical Procedures/methods , Colonoscopy/adverse effects , Colonoscopy/instrumentation , Equipment Design , Humans , Patient Safety
5.
J Lab Autom ; 19(1): 60-74, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23970472

ABSTRACT

We present a negative dielectrophoresis (n-DEP)-based cell separation system for high-throughput and high-efficiency cell separation. To achieve a high throughput, the proposed system comprises macro-sized channel and cantilever-type electrode (CE) arrays (L × W × H = 150 µm × 500 µm × 50 µm) to generate n-DEP force. For high efficiency, double separation modules, which have macro-sized channels and CE arrays in each separation module, are employed. In addition, flow regulators to precisely control the hydrodynamic force are allocated for each outlet. Because the hydrodynamic force and the n-DEP force acting on the target cell are the main determinants of the separation efficiency, we evaluate the theoretical amount of hydrodynamic force and n-DEP force acting on each target cell. Based on theoretical results, separation conditions are experimentally investigated. Finally, to demonstrate the separation performance, we performed the separation of target cells (live K562) from nontarget cells (dead K562) under conditions of low voltage (7Vp-p with 100 kHz) and a flow rate of 15 µL•min⁻¹, 6 µL•min⁻¹, and 8 µL•min⁻¹ in outlets 1, 2, and 3, respectively. The system can separate target cells with 95% separation efficiency in the case of the ratio of 5:1 (live K562:dead K562).


Subject(s)
Cell Separation/methods , Electrophoresis/methods , Gravitation , Cell Line , Humans
6.
Anticancer Drugs ; 24(5): 504-18, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23511429

ABSTRACT

Preliminary studies have suggested that the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC) may be effective in inhibiting the growth of pancreatic cancer cells. In-depth cellular and molecular analyses were carried out to determine NAC's mode of action in inhibiting the growth of a well-characterized pancreatic cancer cell line (AsPC-1). Standardized assays were used to monitor cellular growth, apoptosis, levels of ROS, cellular senescence, migration, and invasiveness. Cell stiffness was measured using atomic force microscopy. Gene expression was monitored by quantitative PCR. NAC significantly inhibits the growth and metastatic potential of AsPC-1 cells by inducing cell-cycle arrest in G1 and subsequent cellular senescence and decreased invasiveness. These anticancer properties are associated with an unexpected increase in the intracellular concentrations of ROS. NAC does not decrease the susceptibility of AsPC-1 cells to the anticancer drugs gemcitabine, mitomycin C, and doxorubicin. NAC-induced changes in gene expression are consistent with the onset of mesenchymal-to-epithelial transition. In conclusion, our findings indicate that NAC induces an integrated series of responses in AsPC-1 cells that make it a highly promising candidate for development as a pancreatic cancer therapeutic.


Subject(s)
Acetylcysteine/pharmacology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cellular Senescence/drug effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , G1 Phase Cell Cycle Checkpoints/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Genes, myc , Humans , Mitomycin/pharmacology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Reactive Oxygen Species/metabolism , Gemcitabine
7.
PLoS One ; 7(10): e46609, 2012.
Article in English | MEDLINE | ID: mdl-23056368

ABSTRACT

The metastatic potential of cells is an important parameter in the design of optimal strategies for the personalized treatment of cancer. Using atomic force microscopy (AFM), we show, consistent with previous studies conducted in other types of epithelial cancer, that ovarian cancer cells are generally softer and display lower intrinsic variability in cell stiffness than non-malignant ovarian epithelial cells. A detailed examination of highly invasive ovarian cancer cells (HEY A8) relative to their less invasive parental cells (HEY), demonstrates that deformability is also an accurate biomarker of metastatic potential. Comparative gene expression analyses indicate that the reduced stiffness of highly metastatic HEY A8 cells is associated with actin cytoskeleton remodeling and microscopic examination of actin fiber structure in these cell lines is consistent with this prediction. Our results indicate that cell stiffness may be a useful biomarker to evaluate the relative metastatic potential of ovarian and perhaps other types of cancer cells.


Subject(s)
Actins/metabolism , Biomarkers/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Cell Line, Tumor , Cell Movement/physiology , Female , Humans , Microscopy, Atomic Force , Neoplasm Metastasis/pathology
8.
Anal Bioanal Chem ; 395(7): 2415-21, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19821115

ABSTRACT

Under the assumption that separation efficiencies are mainly affected by the velocity of flow-induced circulation due to buffer injection in a pendent drop, this paper describes an analysis of the separation efficiency of a droplet-based magnetically activated cell separation (DMACS) system. To investigate the velocity of the flow-induced circulation, we supposed that numerous flows in a pendent drop could be considered as a "theoretically normalized" flow (or conceptually normalized flow, CNF) based on the Cauchy-Goursat theorem. With the morphological characteristics (length and duration time) of a pendent drop depending on the initial volume, we obtained the velocities of the CNF. By measuring the separation efficiencies for different initial volumes and by analyzing the separation efficiency in terms of the velocity of the CNF, we found that the separation efficiencies (in the case of a low rate of buffer injection; 5 and 15 microl x min(-1)) are mainly affected by the velocity of the CNF. Moreover, we confirmed that the phenomenological features of a pendent drop cause a fluctuation of its separation efficiencies over a range of specific volumes (initial volumes ranging from 40 to 80 microl), because of the "sweeping-off" phenomenon, that is, positive cells gathered into the positive fraction are forced to move away from the magnetic side by flow-induced circulation due to buffer injection. In addition, from the variation of the duration time, that is, the interval between the beginning of injection of the buffer solution and the time at which a pendent drop detaches, it could also be confirmed that a shorter duration time leads to decrease of the number of positive cells in negative fraction regardless of the rate of buffer injection (5, 15, and 50 microl x min(-1)). Therefore, if a DMACS system is operated with a 15 microl x min(-1) buffer injection flow rate and an initial volume of 80 microl or more, we would have the best efficiency of separation in the negative fraction.


Subject(s)
Flow Cytometry/methods , Immunomagnetic Separation/methods , Magnetics , Buffers , Flow Cytometry/instrumentation , Immunomagnetic Separation/instrumentation , Models, Biological
9.
Anal Bioanal Chem ; 394(3): 801-9, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19308360

ABSTRACT

In this paper, we successfully separated malignant human breast cancer epithelial cells (MCF 7) from healthy breast cells (MCF 10A) and analyzed the main parameters that influence the separation efficiency with an advanced dielectrophoresis (DEP)-activated cell sorter (DACS). Using the efficient DACS, the malignant cancer cells (MCF 7) were isolated successfully by noninvasive methods from normal cells with similar cell size distributions (MCF 10A), depending on differences between their material properties such as conductivity and permittivity, because our system was able to discern the subtle differences in the properties by generating continuously changed electrical field gradients. In order to evaluate the separation performance without considering size variations, the cells collected from each outlet were divided into size-dependent groups and counted statistically. Following that, the quantitative relative ratio of numbers between MCF 7 and MCF 10A cells in each size-dependent group separated by the DEP were compared according to applied frequencies in the range 48, 51, and 53 MHz with an applied amplitude of 8 V(pp). Finally, under the applied voltage of 48 MHz-8 V(pp) and a flow rate of 290 microm/s, MCF 7 and MCF 10A cells were separated with a maximum efficiency of 86.67% and 98.73% respectively. Therefore, our suggested system shows it can be used for detection and separation of cancerous epithelial cells from noncancerous cells in clinical applications.


Subject(s)
Breast Neoplasms/pathology , Cell Separation/instrumentation , Cell Separation/methods , Epithelial Cells/cytology , Cell Line , Electrophoresis , Epithelial Cells/physiology , Humans
10.
Ind Health ; 46(4): 397-403, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18716389

ABSTRACT

We report findings regarding otolaryngologist-confirmed rhinitis, current exposure to MWF aerosols, fungi, and endotoxins for workers in a plant manufacturing automobile piston rings. Questionnaire data showed that 61.5% of 187 workers exhibited rhinitis-related symptoms. Rhinitis was confirmed in 99 of 115 workers whom were medically examined. Otolaryngologist-confirmed rhinitis was present in 10 of 19 grinding workers (52.6%), 67 of 142 production workers (47.2%), and 22 of 26 quality control (QC) workers (84.6%). These rates are much higher than the rates of rhinitis-related symptoms in automobile plants and other occupational settings and quite high even allowing for the common occurrence of rhinitis in the general population. We found that rhinitis could develop even in workers exposed to less than 0.5mg/m(3) MWF aerosol. The average exposure to fungi exceeded 10 x 10(3) CFU/m(3), a level higher than that reported for other automobile plants. Although we were unable to identify significant risk factors for rhinitis using only the physician-confirmed rhinitis cases, this study concludes that exposure to MWF aerosol, which would include microbes and metals, could contribute to a high occurrence of rhinitis in grinding and production workers. Forty-nine workers (63.6%) of 77 rhinitis patients in grinding and production operations were determined to handle synthetic MWF directly. For QC workers, for whom the prevalence of physician-confirmed rhinitis was highest, exposure to a low level of MWF aerosol, including specific microbe species we couldn't identify, bright light, dry air, and certain work characteristics during inspection are possible risk factors for development of rhinitis. Further studies including identification of fungi species should be conducted so a firm conclusion can be made regarding the development of rhinitis in QC manufacturing plant workers.


Subject(s)
Occupational Exposure , Rhinitis/epidemiology , Adult , Aerosols , Automobiles , Female , Humans , Industry , Korea/epidemiology , Male , Middle Aged , Rhinitis/diagnosis , Rhinitis/etiology , Surveys and Questionnaires
11.
J Occup Health ; 50(2): 212-20, 2008.
Article in English | MEDLINE | ID: mdl-18403875

ABSTRACT

The main objective of this study was to determine the association between synthetic metalworking fluid (MWF) and rhinitis-related symptoms. At a plant manufacturing piston rings for automobiles, we interviewed grinders (19) and manufacturing workers (142) in operations where synthetic or semisynthetic MWF is handled, and administrative office workers (44) regarding the principal symptoms of rhinitis (nasal stuffiness, runny nose, anosmia, nasal itchiness, rhinorrhea, headache, epistaxis, and post-nasal drip). In addition, we assessed the current exposure of workers handling MWF to MWF aerosols, fungi, and endotoxins. Logistic regression analysis was used to examine the association between MWF surrogates indicative of MWF exposure and each rhinitis-related nasal symptom. Odds ratios (ORs) and 95% confidence intervals were adjusted for sex, age, smoking habit, and duration of employment. Among grinders handling synthetic MWF, the frequency of complaints of the dominant symptoms was 66.7% for nasal stuffiness, 77.8% for anosmia, 77.8% for runny nose, and 50.0% for headache. These rates are quite high even allowing for the common occurrence of rhinitis in the general population. Twenty eight of 34 grinding and manufacturing workers (82.4%) sampled were exposed to MWF mist above the threshold limit of 0.2 mg/m(3) listed as a notice of intended change by the American Conference for Governmental Industrial Hygienists (ACGIH). The percentage of workers exposed to MWF mist >0.5 mg/m(3) was 17.6%. Most workers were exposed to fungi levels >103 CFU/m(3). All exposures to endotoxins were <50 EU/m(3). Logistic regression analysis found that use of synthetic MWF was significantly associated with excess risk of nasal stuffiness (OR 3.5), nasal itchiness (OR 2.0), and runny nose (OR 2.1). The use of semi-synthetic MWF had little or no impact on the risk of developing rhinitis-related nasal symptoms. Grinding workers handling synthetic MWF had an increased risk of nasal stuffiness (OR 7.9), anosmia (OR 23.2), nasal itchiness (OR 8.3), runny nose (OR 20.4), post nasal drip (OR 18.4), and headache (OR 7.4) compared to administrative workers. Synthetic MWF may play an important role in the development of the dominant symptoms of rhinitis. Further study is needed to establish the risk of rhinitis or rhinitis-related symptoms according to MWF type.


Subject(s)
Inhalation Exposure/adverse effects , Metallurgy , Occupational Diseases/etiology , Occupational Exposure/adverse effects , Rhinitis/etiology , Adult , Air Pollutants, Occupational/adverse effects , Case-Control Studies , Dose-Response Relationship, Drug , Endotoxins/analysis , Female , Fungi/isolation & purification , Humans , Industrial Oils/poisoning , Lubricants/poisoning , Male , Middle Aged , Occupational Diseases/chemically induced , Occupational Diseases/epidemiology , Rhinitis/chemically induced , Rhinitis/epidemiology , Risk Factors , Smoking/adverse effects , Surveys and Questionnaires
12.
Lab Chip ; 7(11): 1461-8, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17960272

ABSTRACT

A label-free microfluidic method for separation and enrichment of human breast cancer cells is presented using cell adhesion as a physical marker. To maximize the adhesion difference between normal epithelial and cancer cells, flat or nanostructured polymer surfaces (400 nm pillars, 400 nm perpendicular, or 400 nm parallel lines) were constructed on the bottom of polydimethylsiloxane (PDMS) microfluidic channels in a parallel fashion using a UV-assisted capillary moulding technique. The adhesion of human breast epithelial cells (MCF10A) and cancer cells (MCF7) on each channel was independently measured based on detachment assays where the adherent cells were counted with increasing flow rate after a pre-culture for a period of time (e.g., one, two, and four hours). It was found that MCF10A cells showed higher adhesion than MCF7 cells regardless of culture time and surface nanotopography at all flow rates, resulting in label-free separation and enrichment of cancer cells. For the cell types used in our study, an optimum separation was found for 2 hours pre-culture on the 400 nm perpendicular line pattern followed by flow-induced detachment at a flow rate of 200 microl min(-1). The fraction of MCF7 cells was increased from 0.36 +/- 0.04 to 0.83 +/- 0.04 under these optimized conditions.


Subject(s)
Breast Neoplasms/pathology , Cell Adhesion , Microfluidics/methods , Cell Line, Tumor , Humans , Nanostructures
13.
Lab Chip ; 7(11): 1504-8, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17960278

ABSTRACT

We developed a novel method to fabricate a crab-like microrobot that can actuate for a long period in a physiological condition. The microrobot backbone was built with a biocompatible and elastic material-polydimethylsiloxane (PDMS)-by using a specially designed 3D molding aligner, and consisted of three strips of PDMS "legs" connected across a "body." Cardiomyocytes were then plated on the grooved top surface of the backbone, resulting in a high concentration of pulsating cells. These key techniques enabled the microrobot to walk continuously for over ten days. The performance of our crab-like microrobot was measured at an average velocity of 100 microm s(-1), and the estimated total distance it travelled was 50 m over a one-week period. Thus, we have demonstrated for the first time a walking robot that exhibited reliable and long-term actuation performances.


Subject(s)
Myocardium/cytology , Robotics , Animals , Cells, Cultured , Equipment Design , Rats , Rats, Sprague-Dawley
14.
Lab Chip ; 7(10): 1367-70, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17896023

ABSTRACT

This paper presents a hybrid micropump actuated by the up-down motion of a dome shaped cell-polymer membrane composite. The contractile force induced from self-beating cardiomyocytes cultured on the membrane causes shrinkage and relaxation of a microchamber, leading to a flow in a microchannel. Flow direction is controlled by the geometry of diffuser/nozzle in the microchannel. The fabrication process is noninvasive to cells, thus, cardiomyocytes can robustly maintain their activity for a long time. The fluid motion in the microchannel was monitored by tracking 2 microm polystyrene beads. A net flow rate of 0.226 nl min(-1) was obtained in our microscale device. Our device demonstrates a unique performance of a cell-microdevice hybrid lab-on-a-chip that does not require any external power source, preventing electrical or heat shock to analytes.


Subject(s)
Biomimetics/instrumentation , Cell Culture Techniques/instrumentation , Dimethylpolysiloxanes/chemistry , Microfluidic Analytical Techniques/instrumentation , Myocardial Contraction/physiology , Myocytes, Cardiac/physiology , Polymers/chemistry , Silicones/chemistry , Animals , Animals, Newborn , Biomimetics/methods , Cell Culture Techniques/methods , Cells, Cultured , Equipment Design , Equipment Failure Analysis , Microfluidic Analytical Techniques/methods , Myocytes, Cardiac/cytology , Pressure , Rats , Rats, Sprague-Dawley , Stress, Mechanical
15.
Rev Sci Instrum ; 78(7): 074301, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17672779

ABSTRACT

To reduce the problem of cell loss due to adhesion, one of the basic phenomena in microchannel, we proposed the droplet-based magnetically activated cell separator (DMACS). Based on the platform of the DMACS-which consists of permanent magnets, a coverslip with a circle-shaped boundary, and an injection tube-we could collect magnetically (CD45)-labeled (positive) cells with high purity and minimize cell loss due to adhesion. To compare separation efficiency between the MACS and the DMACS, the total number of cells before and after separation with both the separators was counted by flow cytometry. We could find that the number (3241/59 940) of cells lost in the DMACS is much less than that (22 360/59 940) in the MACS while the efficiency of cell separation in the DMACS (96.07%) is almost the same as that in the MACS (96.72%). Practically, with fluorescent images, it was visually confirmed that the statistical data are reliable. From the viability test by using Hoechst 33 342, it was also demonstrated that there was no cell damage on a gas-liquid interface. Conclusively, DMACS will be a powerful tool to separate rare cells and applicable as a separator, key component of lab-on-a-chip.


Subject(s)
Flow Cytometry/instrumentation , Immunomagnetic Separation/instrumentation , Magnetics/instrumentation , Microfluidic Analytical Techniques/instrumentation , Equipment Design , Equipment Failure Analysis , Flow Cytometry/methods , Immunomagnetic Separation/methods , Microfluidic Analytical Techniques/methods , Reproducibility of Results , Sensitivity and Specificity
16.
Proc Inst Mech Eng H ; 221(4): 397-405, 2007 May.
Article in English | MEDLINE | ID: mdl-17605397

ABSTRACT

Recently, the capsule endoscope has been highlighted for the patient's convenience and the possibility of application in the small intestine. However, the capsule endoscope has some limitations in obtaining an image of the digestive organ because its movement depends only on the peristaltic motion. In order to solve these problems, it is necessary to determine the locomotive mechanism of the capsule endoscope. Therefore, the present authors have already proposed an earthworm-like robot, which has a locomotive mechanism. However, this mechanism should be designed so that the earthworm-like robot has a larger stroke than the critical stroke required to perform motion inside the small intestine. In this study, therefore, not only is the modelling of the locomotive process based on a biomechanical study presented but also the movement of the earthworm-like robot in the small intestine is simulated. Through the simulation process, the variation in the critical stroke with regard to the elastic modulus of the mesentery is investigated. Finally, from an in vitro test of the proposed robot, it is found that the experimental result is very similar to that of the simulation. Consequently, the present work will provide guidelines for designing an earthworm-like robot for diagnosis of the small intestine.


Subject(s)
Capsule Endoscopes , Computer-Aided Design , Intestine, Small/physiology , Models, Biological , Robotics/instrumentation , Surgery, Computer-Assisted/instrumentation , Equipment Design , Equipment Failure Analysis , Humans , Intestine, Small/cytology , Intestine, Small/surgery , Motion , Robotics/methods , Surgery, Computer-Assisted/methods
17.
J Biomech ; 40(13): 2823-30, 2007.
Article in English | MEDLINE | ID: mdl-17507021

ABSTRACT

Quantitatively analysis of the contractility of cardiomyocytes is important for understanding the mechanism of heart failure as well as the molecular alterations in diseased heart cells. This paper presents a realistic computational model, which considers the three-dimensional fluid-structural interactions (FSI), to quantify the contractile force of cardiomyocytes on hybrid biopolymer microcantilevers. Prior to this study, only static modeling of the microscale cellular force has been reported. This study modeled the dynamics of cardiomyocytes on microcantilevers in a medium using the FSI. This realistic model was compared with static finite element modeling (FEM) analysis and the Stoney's equation-based analytical solution, and was validated by the deflections of the microcantilevers in the experimental results. Using harmonic response analysis in FSI modeling, the motion of a hybrid biopolymer microcantilever in the medium was identified as a second-order system and the influence of the dynamics of cardiomyocytes could be evaluated quantitatively.


Subject(s)
Biopolymers , Imaging, Three-Dimensional/methods , Models, Biological , Myocardial Contraction/physiology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Computer Simulation
18.
IEEE Trans Nanobioscience ; 5(2): 89-94, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16805104

ABSTRACT

During early development, the chorion envelope of the zebrafish embryo undergoes a thinning process called "chorion softening," which has so far only been characterized chemically. In this study, a micromechanical force sensing system was used to characterize and quantitate mechanical modifications of the zebrafish embryo chorion during early development. Quantitative relationships between applied forces and chorion structural deformations were established at various embryonic stages. The measured penetration force into the chorion at the blastula stage was 1.3-fold greater than those at the prehatching stage. Furthermore, chorion elastic modulus values were determined by using a biomembrane elastic model. The elastic modulus of the chorion at the blastula stage was 1.66-fold greater than that at the prehatching stage, thus indicating that the chorion envelope become mechanically "softened" at the prehatching stage. The experimental results quantitatively describe "chorion softening," which is most likely due to proteolytic activities at the prehatching stage. Gradual chorion softening during embryonic development was also artificially achieved by treating blastula chorion with pronase, a proteolytic enzyme. The forces required to penetrate the pronase-treated chorion were similar to those at the prehatching stage. This similarity suggests that "chorion softening" may be induced by the release of protease from the embryos, and the chemical nature of the process involves proteolytic fragmentation of the ZP2 protein.


Subject(s)
Chorion/embryology , Chorion/physiology , Egg Proteins/physiology , Embryo, Nonmammalian/physiology , Hardness Tests/instrumentation , Membrane Glycoproteins/physiology , Receptors, Cell Surface/physiology , Zebrafish/embryology , Zebrafish/physiology , Animals , Biomechanical Phenomena/instrumentation , Biomechanical Phenomena/methods , Computer Simulation , Elasticity , Hardness Tests/methods , Models, Biological , Morphogenesis/physiology , Physical Stimulation/instrumentation , Physical Stimulation/methods , Stress, Mechanical , Zona Pellucida Glycoproteins
19.
Langmuir ; 22(12): 5419-26, 2006 Jun 06.
Article in English | MEDLINE | ID: mdl-16732672

ABSTRACT

We introduce well-defined nanopillar arrays of a poly(ethylene glycol) (PEG) hydrogel as a cell culture platform to guide a 3D construct of primary rat cardiomyocytes in vitro for potential tissue engineering applications. Ultraviolet (UV)-assisted capillary lithography was used to fabricate highly uniform approximately 150 nm PEG pillars with approximately 400 nm height. It was found that cell adhesion was significantly enhanced on PEG nanopillars (132 +/- 29 cells/mm2) compared to that on the bare PEG control (39 +/- 17 cells/mm2) (p < 0.05) but substantially reduced compared to that on the glass control (502 +/- 45 cells/mm2) (p < 0.01). Furthermore, in colonizing cardiomyocytes, the nanopillars stimulated self-assembled aggregates among the contacting cells with 3D growth, which is a unique feature for nanopatterned PEG hydrogels as a cell culture substrate. The 3D-grown cardiomyocytes retained their conductive and contractile properties, as evidenced by the observation of beating cardiomyocytes with robust action potential generation.


Subject(s)
Cell Culture Techniques , Myocytes, Cardiac/ultrastructure , Nanostructures , Polyethylene Glycols , Animals , Cell Adhesion/physiology , Cells, Cultured , Microscopy, Electron, Scanning , Rats , Rats, Sprague-Dawley
20.
Conf Proc IEEE Eng Med Biol Soc ; 2006: 2211-4, 2006.
Article in English | MEDLINE | ID: mdl-17945700

ABSTRACT

Diagnosis using a flexible endoscope in gastro-intestinal tract becomes very important. In addition, the endoscope is a basic tool of diagnosis and treatment for digestive organ. However, the operation of endoscope is very labor intensive work and gives patients some pains. Therefore, the capsule-type endoscope is developed for the diagnosis of digestive organs. For its conveniences for diagnosis, the capsule endoscope comes into the spotlight. However, it is passively moved by the peristaltic waves of gastro-intestinal tract and thus has some limitations for doctor to get the image of the organ and to diagnose more thoroughly. In order to solve these problems, therefore, a locomotive mechanism of capsule endoscopes has being developed. For the locomotion in the gastro-intestinal tract, our proposed capsule-type microrobot has synchronized multiple legs that are actuated by a linear actuator and two mobile cylinders inside of the capsule. For the feasibility test of the proposed locomotive mechanism, a series of in-vitro experiments using small intestine without incision were carried out. In addition, in-vivo animal tests under a general anesthesia are also executed. From the experimental results, we conclude that the proposed locomotive mechanism is not only applicable to micro capsule endoscopes but also effective to advance inside of intestinal tract.


Subject(s)
Biomimetics/instrumentation , Capsule Endoscopes , Gastrointestinal Tract/surgery , Robotics/instrumentation , Video Recording/instrumentation , Animals , Equipment Design , Equipment Failure Analysis , Humans , Locomotion , Miniaturization , Motion
SELECTION OF CITATIONS
SEARCH DETAIL
...