Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 53(5): 2051-62, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-20131864

ABSTRACT

Efforts to identify new selective and potent norepinephrine reuptake inhibitors (NRIs) for multiple indications by structural modification of the previous 3-(arylamino)-3-phenylpropan-2-olamine scaffold led to the discovery of a novel series of 1-(indolin-1-yl)-1-phenyl-3-propan-2-olamines (9). Investigation of the structure-activity relationships revealed that small alkyl substitution at the C3 position of the indoline ring enhanced selectivity for the norepinephrine transporter (NET) over the serotonin transporter (SERT). Several compounds bearing a 3,3-dimethyl group on the indoline ring, 9k, 9o,p, and 9s,t, exhibited potent inhibition of NET (IC(50) = 2.7-6.5 nM) and excellent selectivity over both serotonin and dopamine transporters. The best example from this series, 9p, a potent and highly selective NRI, displayed oral efficacy in a telemetric rat model of ovariectomized-induced thermoregulatory dysfunction, a mouse p-phenylquinone (PPQ) model of acute visceral pain, and a rat spinal nerve ligation (SNL) model of neuropathic pain.


Subject(s)
Indoles/pharmacology , Neurotransmitter Uptake Inhibitors/chemistry , Neurotransmitter Uptake Inhibitors/pharmacology , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Propanolamines/pharmacology , Animals , Body Temperature Regulation/drug effects , Female , Indoles/chemical synthesis , Indoles/chemistry , Magnetic Resonance Spectroscopy , Neurotransmitter Uptake Inhibitors/chemical synthesis , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Pain/drug therapy , Propanolamines/chemical synthesis , Propanolamines/chemistry , Rats , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship
2.
J Med Chem ; 53(4): 1774-87, 2010 Feb 25.
Article in English | MEDLINE | ID: mdl-20095622

ABSTRACT

In an effort to develop orally active farnesoid X receptor (FXR) agonists, a series of tetrahydroazepinoindoles with appended solubilizing amine functionalities were synthesized. The crystal structure of the previously disclosed FXR agonist, 1 (FXR-450), aided in the design of compounds with tethered solubilizing functionalities designed to reach the solvent cavity around the hFXR receptor. These compounds were soluble in 0.5% methylcellulose/2% Tween-80 in water (MC/T) for oral administration. In vitro and in vivo optimization led to the identification of 14dd and 14cc, which in a dose-dependent fashion regulated low density lipoprotein cholesterol (LDLc) in low density lipoprotein receptor knockout (LDLR(-/-)) mice. Compound 14cc was dosed in female rhesus monkeys for 4 weeks at 60 mg/kg daily in MC/T vehicle. After 7 days, triglyceride (TG) levels and very low density lipoprotein cholesterol (VLDLc) levels were significantly decreased and LDLc was decreased 63%. These data are the first to demonstrate the dramatic lowering of serum LDLc levels by a FXR agonist in primates and supports the potential utility of 14cc in treating dyslipidemia in humans beyond just TG lowering.


Subject(s)
Azepines/chemical synthesis , Hypolipidemic Agents/chemical synthesis , Indoles/chemical synthesis , Receptors, Cytoplasmic and Nuclear/agonists , Animals , Azepines/pharmacokinetics , Azepines/pharmacology , Biological Availability , Cell Line , Cholesterol, LDL/blood , Female , Humans , Hypolipidemic Agents/pharmacokinetics , Hypolipidemic Agents/pharmacology , Indoles/pharmacokinetics , Indoles/pharmacology , Macaca mulatta , Male , Mice , Mice, Knockout , Microsomes, Liver/metabolism , Models, Molecular , Rats , Rats, Sprague-Dawley , Receptors, LDL/genetics , Solubility , Structure-Activity Relationship , Triglycerides/blood
3.
J Med Chem ; 52(18): 5703-11, 2009 Sep 24.
Article in English | MEDLINE | ID: mdl-19722525

ABSTRACT

Sequential structural modifications of the aryloxypropanamine template (e.g., atomoxetine, 2) led to a novel series of 1-(3-amino-2-hydroxy-1-phenyl propyl)-1,3-dihydro-2H-benzimidazol-2-ones as selective norepinephrine reuptake inhibitors (NRIs). In general, this series of compounds potently blocked the human norepinephrine transporter (hNET) while exhibiting selectivity at hNET against both the human serotonin (hSERT) and dopamine transporters (hDAT). Numerous compounds (e.g., 19-22) had low nonamolar hNET potency with IC(50) values of 7-10 nM and excellent selectivity (>500 fold) at hNET over hSERT and hDAT. Several compounds, such as 20 and 22, were tested in a telemetric rat model of ovariectomized-induced thermoregulatory dysfunction and were efficacious at oral doses of 3 mg/kg in reducing the tail skin temperature. In addition, compound 20 was also studied in the rat hot plate and spinal nerve ligation (SNL) models of acute and neuropathic pain, respectively, and was orally efficacious at doses of 3-10 mg/kg.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Neurotransmitter Uptake Inhibitors/chemistry , Neurotransmitter Uptake Inhibitors/pharmacology , Norepinephrine/metabolism , Administration, Oral , Animals , Behavior, Animal/drug effects , Benzimidazoles/administration & dosage , Benzimidazoles/pharmacokinetics , Biological Transport/drug effects , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Female , Humans , Hyperalgesia/physiopathology , Male , Neurotransmitter Uptake Inhibitors/administration & dosage , Neurotransmitter Uptake Inhibitors/pharmacokinetics , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Propanolamines/chemistry , Rats , Rats, Sprague-Dawley , Serotonin Plasma Membrane Transport Proteins/metabolism , Spinal Nerves/drug effects , Spinal Nerves/physiology , Structure-Activity Relationship , Substrate Specificity
4.
Bioorg Med Chem Lett ; 19(18): 5289-92, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19683924

ABSTRACT

Pyrrole[2,3-d]azepines have been identified as potent agonists of the farnesoid X receptor (FXR). Based on the planar X-ray crystal structure of WAY-362450 1 in the ligand binding domain and molecular modeling studies, non-planar reduced compounds were designed which led to agonists that exhibit high aqueous solubility and retain moderate in vitro potency.


Subject(s)
Azepines/pharmacology , Pyrroles/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/metabolism , Azepines/chemistry , Humans , Models, Molecular , Protein Binding , Pyrroles/chemistry , Receptors, Cytoplasmic and Nuclear/chemistry , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 19(19): 5807-10, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19713106

ABSTRACT

The SAR of a series of 1-amino-3-(1H-indol-1-yl)-3-phenylpropan-2-ols as monoamine reuptake inhibitors, with a goal to improve both potency toward inhibiting the norepinephrine transporter and selectivity over the serotonin transporter, is reported. The effect of specific substitution on both the 3-phenyl group and the indole moiety were explored. This study led to the discovery of compound 20 which inhibited the norepinephrine transporter with an IC50 value of 4 nM while exhibiting 86-fold selectivity over the serotonin transporter.


Subject(s)
Adrenergic Uptake Inhibitors/chemistry , Indoles/chemistry , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Adrenergic Uptake Inhibitors/chemical synthesis , Adrenergic Uptake Inhibitors/pharmacokinetics , Animals , Humans , Indoles/chemical synthesis , Indoles/pharmacokinetics , Models, Animal , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Rats , Serotonin Plasma Membrane Transport Proteins/chemistry , Serotonin Plasma Membrane Transport Proteins/metabolism , Selective Serotonin Reuptake Inhibitors/chemical synthesis , Selective Serotonin Reuptake Inhibitors/chemistry , Selective Serotonin Reuptake Inhibitors/pharmacokinetics , Stereoisomerism , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 19(17): 5029-32, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19632110

ABSTRACT

A novel series of monoamine reuptake inhibitors, the 1-amino-3-(1H-indol-1-yl)-3-phenylpropan-2-ols, have been discovered by combining virtual and focused screening efforts with design techniques. Synthesis of the two diastereomeric isomers of the molecule followed by chiral resolution of each enantiomer revealed the (2R,3S)-isomer to be a potent norepinephrine reuptake inhibitor (IC(50)=28 nM) with excellent selectivity over the dopamine transporter and 13-fold selectivity over the serotonin transporter.


Subject(s)
Adrenergic Uptake Inhibitors/chemistry , Antidepressive Agents/chemistry , Norepinephrine/antagonists & inhibitors , Propanols/chemistry , Adrenergic Uptake Inhibitors/chemical synthesis , Adrenergic Uptake Inhibitors/pharmacology , Animals , Antidepressive Agents/chemical synthesis , Antidepressive Agents/pharmacology , CHO Cells , Cell Line , Cricetinae , Cricetulus , Crystallography, X-Ray , Dogs , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Dopamine Plasma Membrane Transport Proteins/metabolism , Drug Discovery , Humans , Molecular Conformation , Propanols/chemical synthesis , Propanols/pharmacology , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Structure-Activity Relationship
7.
Bioorg Med Chem ; 16(6): 3067-75, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18226531

ABSTRACT

Kv1.1 channels are expressed in many regions of the brain and spinal cord [Monaghan, M. M.; Trimmer, J. S.; Rhodes, K. J. J. Neurosci.2001, 21, 5973; Rasband, M. N.; Trimmer, J. S. J. Comp. Neurol.2001, 429, 166; Trimmer, J. S.; Rhodes, K. J. Ann. Rev. Physiol.2004, 66, 477]. When expressed alone, they produce a delayed rectifier slowly inactivating type current that contributes to hyperpolarizing the neuron following depolarization. In the hippocampus Kv1.1 is co-expressed with Kvbeta1 (and other beta subunits), which converts Kv1.1 into a transient, fast inactivating current, reducing its ability to hyperpolarize the cell and thus increasing neuronal excitability. To reduce neuronal excitability, screening for compounds that prevent inactivation of Kv1.1 channels by Kvbeta1 was performed using a yeast two-hybrid screen. A variety of compounds were discovered in this assay and subsequently determined to disrupt inactivation of the ionic currents, and hence were termed 'disinactivators'. Several of these disinactivators also inhibited pentylenetetrazole-induced seizures (PTZ) in mice. Compounds were found to act by several mechanisms to prevent Kvbeta1 inactivation of Kv1.1 channels, including enhancement of Ca(2+) release/influx and by direct mechanisms. Two structural classes were identified that act on a Kvbeta1N70-Kv1.1 chimera where the N-terminal 70 amino acids of Kvbeta1 were attached to the N-terminus of Kv1.1. It is likely that these disinactivators act directly on the Kvbeta1 N-terminus or its receptor site on Kv1.1, thus preventing it from blocking Kv1.1 channels. Compounds acting by this mechanism may be useful for reducing neuronal hyperexcitability in diseases such as epilepsy and neuropathic pain.


Subject(s)
Kv1.1 Potassium Channel/drug effects , Organic Chemicals/pharmacology , Small Molecule Libraries , Animals , Calcium/metabolism , Membrane Potentials/drug effects , Mice , Seizures/prevention & control , Structure-Activity Relationship , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...