Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Toxicol Res ; 39(4): 669-679, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37779588

ABSTRACT

Glioblastoma (GBM) is the most aggressive type of central nervous system tumor. Molecular targeting may be important when developing efficient GBM treatment strategies. Sequencing of GBMs revealed that the receptor tyrosine kinase (RTK)/RAS/phosphatidylinositol-3-kinase pathway was altered in 88% of samples. Interestingly, AXL, a member of RTK, was proposed as a promising target in glioma therapy. However, the molecular mechanism of AXL modulation of GBM genesis and proliferation is still unclear. In this study, we investigated the expression and localization of hypoxia-inducible factor-1 alpha (HIF-1α) by AXL in GBM. Both AXL mRNA and protein are overexpressed in GBM. Short-interfering RNA knockdown of AXL in U251-MG cells reduced viability and migration. However, serum withdrawal reduced AXL expression, abolishing the effect on viability. AXL is also involved in hypoxia regulation. In hypoxic conditions, the reduction of AXL decreased the level and nuclear localization of HIF-1α. The co-expression of HIF-1α and AXL was found in human GBM samples but not normal tissue. This finding suggests a mechanism for GBM proliferation and indicates that targeting AXL may be a potential GBM therapeutic. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-023-00195-z.

2.
Toxicol Res ; 39(3): 341-353, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37398563

ABSTRACT

Scavenger Receptor Class F Member 2 (SCARF2), also known as the Type F Scavenger Receptor Family gene, encodes for Scavenger Receptor Expressed by Endothelial Cells 2 (SREC-II). This protein is a crucial component of the scavenger receptor family and is vital in protecting mammals from infectious diseases. Although research on SCARF2 is limited, mutations in this protein have been shown to cause skeletal abnormalities in both SCARF2-deficient mice and individuals with Van den Ende-Gupta syndrome (VDEGS), which is also associated with SCARF2 mutations. In contrast, other scavenger receptors have demonstrated versatile responses and have been found to aid in pathogen elimination, lipid transportation, intracellular cargo transportation, and work in tandem with various coreceptors. This review will concentrate on recent progress in comprehending SCARF2 and the functions played by members of the Scavenger Receptor Family in pre-diagnostic diseases.

3.
Phys Chem Chem Phys ; 25(31): 20933-20946, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37496330

ABSTRACT

Liquid Na combustion is a significant safety concern in sodium-cooled fast reactors. Atomistic simulations are an alternative to experiments for studying detailed mechanisms of complex combustion processes. However, accurate simulations of the interfaces involved in combustion are challenging even for density functional theory (DFT), because the systematic error between different chemical systems cannot be fully cancelled. Herein, we report the achievement of a key milestone in atomistic simulation of liquid Na combustion, which involves the development of a machine learning (ML) moment tensor potential that allows accurate simulation of interface systems between liquid Na and solid Na2O. The ML potential is trained by using supervised and active learning to ensure DFT-level accuracy. An empirical correction is then applied to achieve experimental accuracy by reducing systematic error. Consequently, the basic properties of liquid Na and solid Na2O are accurately simulated. In addition, with empirical correction, experimental O solubility data for liquid Na at 350-900 K are reproduced by using interface molecular dynamics simulations and a thermodynamic model. The temperature dependence of the enthalpy and entropy of the Na2O solution and their effect on O solubility are evaluated. The results show that, despite the increase in solution enthalpy with temperature, O solubility increases more rapidly than the linear Arrhenius plot due to the effect of solution entropy. The results of this study indicate that, with appropriate correction, ML potentials can achieve near-experimental accuracy, beyond the accuracy of DFT, in interface simulations and material properties calculations, paving the way for sodium combustion simulations in the future.

4.
Int J Environ Health Res ; 33(12): 1479-1489, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35854640

ABSTRACT

Fine particulate matter (PM2.5) is an air pollutant that causes severe lung injury. We investigated the effects of Jujuboside B (JB), a component of Zizyphi Spinosi Semen, on lung toxicity caused by PM2.5, and we identified the mechanism of its protective effect. Lung injury in an animal model was induced by intratracheal administration of a PM2.5 suspension. After 2 days of PM2.5 pretreatment, mice were administered JB via the tail vein three times over a 2-day period. JB significantly reduced the histological lung damage as well as the lung wet/dry weight ratio. JB also considerably reduced PM2.5-induced autophagy dysfunction, apoptosis, inflammatory cytokine levels, and the number of PM2.5-induced lymphocytes in the bronchial alveolar fluid. We conclude that by regulating TLR2, 4-MyD88, and mTOR-autophagy pathways, JB exerts a protective effect on lung injury. Thus, JB can be used as a potential therapeutic agent for PM2.5-induced lung damage.


Subject(s)
Lung Injury , Saponins , Mice , Animals , Lung Injury/chemically induced , Lung Injury/drug therapy , Lung , Saponins/toxicity , Saponins/metabolism , Particulate Matter/toxicity
5.
J Med Food ; 26(1): 40-48, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36576404

ABSTRACT

High mobility group box protein 1 (HMGB1) is a biomolecule that acts as an alerting signal of late sepsis by accelerating the production of proinflammatory cytokines, and eventually leads to various inflammation-related symptoms. When released into plasma at high concentration, it disrupts precise diagnosis and prognosis and worsens the survival of patients with systemic inflammatory conditions. Jujuboside B (JB) is a natural compound pressed from the seed of Zizyphi Spinosi Semen, which is known for its medical efficacies in treating various conditions such as hyperlipidemia, hypoxia, and platelet aggregation. Nevertheless, the medicinal activity of JB on HMGB1-involved inflammatory response in vascular cells in the human body is still ambiguous. Therefore, we hypothesized that JB could regulate the lipopolysaccharide (LPS)-induced dynamics of HMGB1 and its mediated cascade in inflammatory responses in human umbilical vein endothelial cells (HUVECs). In this experiment, JB and HMGB1 were administered in that order. In vitro and in vivo permeability, and cell viability, adhesion, and excavation of leukocytes, development of cell adhesion molecules, and lastly production of proinflammatory substances were investigated on human endothelial cells and mouse disease models to investigate the efficacy of JB in inflammatory condition. JB substantially blocked the translocation of HMGB1 from HUVECs and controlled HMGB1-induced adhesion and extravasation of the neutrophils through LPS-treated HUVECs. Moreover, JB decreased the formation of HMGB1 receptors and continually prevented HMGB1-induced proinflammatory mechanisms by blocking transcription of nuclear factor-κB and synthesis of tumor necrosis factor-α. In conclusion, JB demonstrated preventive effects against inflammatory pathologies and showed the potential to be a candidate substance for various inflammatory diseases by regulating HMGB1-mediated cellular signaling.


Subject(s)
HMGB1 Protein , Sepsis , Humans , Animals , Mice , HMGB1 Protein/metabolism , HMGB1 Protein/pharmacology , Lipopolysaccharides/pharmacology , Human Umbilical Vein Endothelial Cells , Sepsis/metabolism , Mice, Inbred C57BL , Cell Movement
6.
Rejuvenation Res ; 26(2): 51-56, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36576017

ABSTRACT

Data regarding plant extracts with antiaging properties, particularly through the biological process involving telomeres and telomerase, are limited. Thus, this study aimed to investigate the effects of Acanthopanax senticosus extract (ASE) supplementation on leukocyte telomere length (LTL), telomerase, and inflammatory and metabolic markers in adult animal models. A freeze-dried product of ethanol extracts was prepared using a mixture product of stem and root ASE. In a 24-week experiment that included 24-week-old Sprague Dawley male rats, experimental rats (n = 10) were administrated with 7 mg/day of ASE dissolved in saline and control rats (n = 10) with saline. All rats had access to chow and tap water ad libitum. Their LTL and plasma levels of telomerase and inflammatory and metabolic markers were assayed and compared between the two groups. The experimental rats showed significantly longer LTL (p < 0.05) and lower plasma levels of alanine aminotransferase (p < 0.05) and aspartate aminotransferase (p = 0.08) compared with the control. In addition, LTL was correlated with the aforementioned biochemical parameters of liver function test among experimental rats only. No significant differences in plasma levels of telomerase and inflammatory and metabolic markers were observed. These findings indicate that ASE supplementation may attenuate LTL shortening and reduce liver biochemical parameters, indicating its potential antiaging and hepatoprotective effects without any adverse metabolic response.


Subject(s)
Eleutherococcus , Telomerase , Rats , Animals , Rats, Sprague-Dawley , Telomerase/metabolism , Eleutherococcus/chemistry , Eleutherococcus/metabolism , Plant Extracts/pharmacology , Leukocytes/metabolism , Telomere/metabolism
7.
J Nat Med ; 77(1): 87-95, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36064835

ABSTRACT

Jujuboside B (JB) found in the seeds of Zizyphi Spinosi Semen possesses pharmacological functions, such as anti-inflammatory, antiplatelet aggregation, and antianxiety potentials. This study evaluated the effect of JB on liver failure in cecal ligation and puncture (CLP)-induced sepsis. First, we observed histopathological changes in the liver by optical microscopy and the activity of enzymes in serum such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST). We further measured the levels of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, nitric oxide (NO), and antioxidative parameters in liver homogenate. The expression of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2), and glucocorticoid receptor (GR) in the liver was observed by Western blotting. CLP enhanced the migration of inflammatory cells, ALT and AST concentrations, and necrosis, which were reduced by JB. In addition, JB reduced 11ß-HSD2 expression and levels of inflammatory mediators (TNF-α, IL-1ß, and NO) in the liver, increased GR expression, enhanced endogenous antioxidative capacity. These results further suggest that JB may protect the liver against CLP-induced damage by regulating anti-inflammatory responses, downregulating 11ß-HSD2 expression and antioxidation, and up-regulating GR expression.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 2 , Saponins , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Glucocorticoids , Saponins/pharmacology , Tumor Necrosis Factor-alpha , Antioxidants/pharmacology
8.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361915

ABSTRACT

Xuebijing injection (XBJI) (comprising of five herbs) is a widely used traditional Chinese medicine for sepsis treatment. However, the bioactive components of XBJI and the mechanisms responsible for its sepsis-mitigating action have not been experimentally determined. One of the main bioactive compounds in XBJI-benzoylpaeoniflorin (BPF)-inhibits the expressions of key mediators of inflammation such as nuclear factor kappa B (NF-κB), cyclooxygenase-1 (COX-1), and COX-2. However, its effects on sepsis have not been determined yet. Therefore, here, we investigated the immunomodulatory effect of BPF on severely inflamed endothelial cells, THP-1 macrophages, peritoneal macrophages, and mice. Human umbilical vein endothelial cells (HUVECs) and THP-1-macrophages were activated using lipopolysaccharide (LPS) after pretreatment with BPF. Subsequently, changes in the expression profiles of pro-inflammatory molecules including inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were determined using quantitative real-time polymerase chain reaction (qPCR) and Western blot analysis. Furthermore, we monitored the phosphorylation of NF-kB and mitogen-activated protein kinases (MAPKs) to determine their activation levels. Using the LPS-induced mouse model of sepsis, we studied the effects of BPF on inflammatory cytokine production, pulmonary histopathology, and survival rates. Finally, we evaluated whether BPF protects against cecal ligation and puncture (CLP)-induced sepsis, as it closely mimics human sepsis. BPF pretreatment inhibited LPS-induced increase in mRNA and protein levels of iNOS, TNF-α, and IL-6 in HUVECs and THP-1-macrophages. It also suppressed LPS-mediated phosphorylation of p65, p38, JNK, and ERK. Mice with LPS-induced-sepsis who were treated with BPF had lower serum levels of IL-6, TNF-α, IL-1ß, CXCL1, and CXCL2 than the control mice treated with BPF. Histopathology revealed that BPF treatment alleviated LPS-induced lung damage. In addition, in mice given a lethal dose of LPS, BPF treatment showed a dose-dependent improvement in survival rates. BPF treatment dose-dependently inhibited the LPS-induced IL-6, TNF-α, and CXCL1 production in peritoneal macrophages. BPF treatment also dose-dependently improved the survival rates in mice with CLP-induced sepsis. These results show that BPF alleviates LPS-stimulated septic conditions and protects mice from CLP-induced sepsis. Our research marks BPF as a potential drug in the treatment of sepsis and various inflammatory diseases.


Subject(s)
Lipopolysaccharides , Sepsis , Mice , Humans , Animals , Lipopolysaccharides/toxicity , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Endothelial Cells/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Nitric Oxide Synthase Type II/metabolism , NF-kappa B/metabolism , Sepsis/drug therapy , Disease Models, Animal , Nitric Oxide/metabolism
9.
Int J Mol Sci ; 23(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36430427

ABSTRACT

Ultrafine particulate matter with less than 2.5 µm diameter (PM2.5) is an air pollutant that causes severe lung damage. Currently, effective treatment and preventive methods for PM2.5-induced lung damage are limited. Cirsilineol (CSL) is a small natural compound isolated from Artemisia vestita. In this study, the efficacy of CSL on PM2.5-induced lung toxicity was tested, and its mechanism was identified. Lung injury was caused by intratracheal administration of PM2.5 suspension in animal models. Two days after PM2.5 pretreatment, CSL was injected via mouse tail vein for two days. The effects of CSL on PM2.5-induced lung damage, autophagy, apoptosis, and pulmonary inflammation in a mouse model and their mechanisms were investigated. CSL significantly suppressed histological lung damage and lung wet/dry weight proportion. CSL also significantly reduced PM2.5-induced autophagy dysfunction, apoptosis, lymphocyte suppression, and inflammatory cytokine levels in bronchoalveolar fluid (BALF). Furthermore, CSL increased mammalian target of rapamycin (mTOR) phosphorylation and significantly inhibited the expression of Toll-like receptors (TLR) 2 and 4, MyD88, and the autophagy proteins, Beclin1 and LC3II. Thus, CSL exerts protective effects on pulmonary damage by regulating mTOR and TLR2,4-myD88 autophagy pathways. Therefore, CSL can be used as an effective treatment for PM2.5-induced lung damage.


Subject(s)
Lung Injury , Mice , Animals , Lung Injury/chemically induced , Lung Injury/drug therapy , Myeloid Differentiation Factor 88 , TOR Serine-Threonine Kinases , Particulate Matter/toxicity , Disease Models, Animal , Mammals
10.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36142124

ABSTRACT

Sparstolonin B (SsnB), which is found in Sparganium stoloniferum, prevents the synthesis of inflammatory mediators and is related to functional pathways of survival. In this study, we assessed the possible protective functions of SsnB on lipopolysaccharide (LPS)-induced inflammatory responses. We determined the functions of SsnB on controlling heme oxygenase (HO)-1, cyclooxygenase (COX-)2, and inducible nitric oxide synthase (iNOS) in LPS-activated human umbilical vein endothelial cells (HUVECs). Furthermore, the distinct function of SsnB on the expression of iNOS and well-known pro-inflammatory mediators, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1ß, were assessed in the pulmonary histological status of LPS-injected mice. SsnB upregulated the HO-1 production, inhibited luciferase-NF-κB interaction, and lowered COX-2/PGE2 and iNOS/NO, which lead to the reduction of STAT-1 phosphorylation. Moreover, SsnB enhanced the nuclear translocation of Nrf2, elevated the binding activity between Nrf2 and antioxidant response elements (AREs), and weakened IL-1ß expression on LPS-treated HUVECs. SsnB-suppressed iNOS/NO synthesis was restored by the process of the RNAi inhibition of HO-1. In experiment with an LPS-injected animal model, SsnB remarkably decreased the iNOS expression in the pulmonary biostructure and TNF-α level in the bronchoalveolar lavage fluid (BALF). Therefore, these results demonstrate that SsnB is responsible for inflammation ameliorative activity by controlling iNOS through inhibition of both NF-κB expression and p-STAT-1. Therefore, SsnB could be a candidate for promoting novel clinical substances to remedy pathologic inflammation.


Subject(s)
Lipopolysaccharides , NF-kappa B , Animals , Anti-Inflammatory Agents/therapeutic use , Cyclooxygenase 2/metabolism , Dinoprostone/pharmacology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Heterocyclic Compounds, 4 or More Rings , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/pathology , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Luciferases/metabolism , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Tumor Necrosis Factor-alpha/metabolism
11.
Am J Chin Med ; 50(5): 1349-1360, 2022.
Article in English | MEDLINE | ID: mdl-35748214

ABSTRACT

Cornuside (CNS), found in the fruit of Cornus officinalis Seib, is a natural bisiridoid glucoside that possesses therapeutic effects by suppressing inflammation. This study aimed to determine whether CNS could inhibit the inflammatory response induced by lipopolysaccharide (LPS) in human umbilical vein endothelial cells (HUVECs) and mice, as well as to decipher the mechanisms. After activating HUVECs with LPS, the cells were treated with CNS. Cells were then isolated for protein or mRNA assays to analyze signaling and inflammatory molecules. In addition, mice received an intraperitoneal injection of LPS, followed by an intravenously administered dose of CNS. CNS inhibited cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) expressions induced by LPS. CNS decreased phosphorylated signal transducer and activator of transcription 1 (STAT1)-1 by promoting HO-1 expression, inhibiting nuclear factor (NF)-[Formula: see text]B-luciferase activity, and decreasing COX-2/prostaglandin E2 (PGE2) and iNOS/NO. Furthermore, CNS treatment in LPS-activated HUVECs increased the nuclear translocation of nuclear factor erythrocyte 2-related factor 2 (Nrf2) and combined Nrf2 to anti-oxidant response elements and decreased IL-1[Formula: see text] production. Reduced iNOS/NO expression by CNS was restored when HO-1 RNAi inhibited heme oxygenase-1 (HO-1). After CNS treatment in vivo, iNOS levels in lung tissue and tumor necrosis factor (TNF)-[Formula: see text] expression in the bronchoalveolar lavage fluid were significantly decreased. The results indicated that CNS increased HO-1 expression, reduced LPS-activated NF-[Formula: see text]B-luciferase activity, and inhibited iNOS/NO and COX-2/PGE2, all of which contributed to the inhibition of STAT-1 phosphorylation. Thus, CNS can be a potential new substance for treating inflammatory disorders.


Subject(s)
Heme Oxygenase-1 , NF-E2-Related Factor 2 , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antioxidants , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Glucosides , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Lipopolysaccharides/pharmacology , Luciferases/metabolism , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Pyrans
12.
Toxicol Res ; 38(2): 249-256, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35419275

ABSTRACT

Scavenger receptor class F member 2 (SCARF2) is expressed by endothelial cells with very large cytoplasmic domains and is the second isotype, also known as scavenger receptor expressed by endothelial cells 2 (SREC-2). SREC-1 plays an important role in the binding and endocytosis of various endogenous and exogenous ligands. Many studies have been carried out on modified low-density lipoprotein internalization activity, but there have been few studies on SCARF2. Higher expression of SCARF2 has been found in glioblastoma (GBM) than normal brain tissue. Through analysis of The Cancer Genome Atlas database, it was confirmed that SCARF2 is widely expressed in GBM, and increased SCARF2 expression correlated with a poor prognosis in patients with glioma. The results of this study showed that the expression of SCARF2 is increased in GBM cell lines and patients, suggesting that SCARF2 may be a potential diagnostic marker and therapeutic molecule for cancers including glioma.

13.
Int J Mol Sci ; 23(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35216180

ABSTRACT

High mobility group box 1 (HMGB1) is acknowledged to have critical functions; therefore, targeting this protein may have therapeutic effects. One example is potential antiseptic activity obtained by suppressing HMGB1 secretion, leading to the recovery of vascular barrier integrity. Cornuside (CN), which is a product extracted from the fruit of Cornusofficinalis Seib, is a natural bis-iridoid glycoside with the therapeutic effects of suppressing inflammation and regulating immune responses. However, the mechanism of action of CN and impact on sepsis is still unclear. We examined if CN could suppress HMGB1-induced excessive permeability and if the reduction of HMGB1 in response to LPS treatment increased the survival rate in a mouse model of sepsis. In human endothelial cells stimulated by LPS and mice with septic symptoms of cecal ligation and puncture (CLP), we examined levels of proinflammatory proteins and biomarkers as an index of tissue damage, along with decreased vascular permeability. In both LPS-treated human umbilical vein endothelial cells (HUVECs) and the CLP-treated mouse model of sepsis, we applied CN after the induction processes were over. CN suppressed excessive permeability and inhibited HMGB1 release, leading to the amelioration of vascular instability, reduced mortality, and improved histological conditions in the CLP-induced septic mouse model. Overall, we conclude that the suppressed release of HMGB1 and the increased survival rate of mice with CLP-induced sepsis caused by CN may be an effective pharmaceutical treatment for sepsis.


Subject(s)
Glucosides/pharmacology , HMGB1 Protein/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Pyrans/pharmacology , Sepsis/drug therapy , Sepsis/metabolism , Animals , Cell Adhesion/drug effects , Cell Movement/drug effects , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Signal Transduction/drug effects
14.
Phytomedicine ; 99: 153987, 2022 May.
Article in English | MEDLINE | ID: mdl-35183932

ABSTRACT

BACKGROUND: Sparstolonin B (SsnB) is an isocumarin compound extracted from medicinal plants such as Sparganium stoloniferum and Scirpus yagara with well documented anti-inflammatory activity. Here we examined if SsnB also possesses antithrombotic activity and the underlying mechanisms. METHODS: Anti-thrombotic effects of SsnB were determined by measuring in vitro/ex vivo/in vivo clotting times, platelet aggregation assay, production and activity of factor Xa, nitric oxide, and expressions of relative proteins. RESULTS: Treatment with SsnB prolonged the clotting time of human platelet-poor serum at concentrations comparable to the clinical anticoagulant rivaroxaban (as a positive control) and inhibited human platelet aggregation induced by adenosine diphosphate (ADP) or the thromboxane A2 analog U46619. SsnB also inhibited U46619-induced and ADP-induced phosphorylation of phospholipase C (PLC)γ2/protein kinase C (PKC) and intracellular calcium mobilization, both of which are required for platelet aggregation. In addition, SsnB inhibited expression of the cell adhesion factors P-selectin and PAC-1. SsnB increased production of the vasodilator nitric oxide and suppressed secretion of the vasoconstrictor endothelin-1 from ADP- or U46619-treated human umbilical vein endothelial cells. Further, SsnB reduced coagulation factor Xa (FXa) catalytic activity and production by endothelial cells as well as FXa-induced platelet aggregation. CONCLUSION: Finally, SsnB injection reduced thrombus formation time, number, size, and related mortality in mouse models of thromboembolism. SsnB is a promising antithrombotic agent targeting both FXa and platelet aggregation pathways, which can overcome the side effects of existing antithrombotic agents.

15.
J Nat Med ; 76(2): 451-461, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35025027

ABSTRACT

Transforming growth factor ß-induced protein (TGFBIp), as an extracellular matrix protein, is expressed TGF-ß in some types of cells. Experimental sepsis is mediated by expressed and released TGFBIp in primary human umbilical vein endothelial cells (HUVECs). Cornuside (CNS) is a bisiridoid glucoside compound found in the fruit of Cornus officinalis SIEB. et ZUCC. Based on the known functions of CNS, such as the immunomodulatory and anti-inflammatory activities, we tested whether TGFBIp-mediated septic responses were suppressed by CNS in human endothelial cells and mice and investigated the underlying anti-septic mechanisms of CNS. Data showed that the secretion of TGFBIp by lipopolysaccharide (LPS) and severe septic responses by TGFBIp were effectively inhibited by CNS. And, TGFBIp-mediated sepsis lethality and pulmonary injury were reduced by CNS. Therefore, the suppression of TGFBIp-mediated septic responses by CNS suggested that CNS may be used as a potential therapeutic agent for several vascular inflammatory diseases, with the inhibition of the TGFBIp signaling pathway as the mechanism of action.


Subject(s)
Glucosides , Transforming Growth Factor beta , Animals , Glucosides/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice , Mice, Inbred C57BL , Pyrans
16.
Front Mol Biosci ; 8: 639164, 2021.
Article in English | MEDLINE | ID: mdl-33842543

ABSTRACT

[This corrects the article DOI: 10.3389/fmolb.2020.00153.].

17.
Front Oncol ; 10: 550673, 2020.
Article in English | MEDLINE | ID: mdl-33154941

ABSTRACT

Alpha-Methylacyl-CoA racemase (AMACR), which was initially discovered as a prostate cancer marker, is critical for the chiral inversion mechanism of branched-chain fatty acids. However, the function of AMACR in brain tumors has not been investigated. In this study, AMACR appeared to be involved in glioblastoma. The protein and mRNA levels of AMACR were highly elevated in glioblastoma. Downregulation of AMACR inhibited cell proliferation. Comprehensive analysis of the public REMBRANDT GBM dataset also confirmed that the level of AMACR expression was correlated with the clinical prognosis of glioma patients. In summary, these findings indicate that AMACR expression is increased in a glioblastoma cell line and glioma patients, suggesting that AMACR might be a potential diagnostic marker and therapeutic target for cancer, including glioma.

18.
Biomed Res Int ; 2020: 8105735, 2020.
Article in English | MEDLINE | ID: mdl-32802877

ABSTRACT

It is widely acknowledged that cancer cell energy metabolism relies mainly on anaerobic glycolysis; this phenomenon is described as the Warburg effect. However, whether the Warburg effect is caused by genetic dysregulation in cancer or is the cause of cancer remains unknown. The exact reasons and physiology of this abnormal metabolism are unclear; therefore, many researchers have attempted to reduce malignant cell growth in tumors in preclinical and clinical studies. Anticancer strategies based on the Warburg effect have involved the use of drug compounds and dietary changes. We recently reviewed applications of the Warburg effect to understand the benefits of this unusual cancer-related metabolism. In the current article, we summarize diet strategies for cancer treatment based on the Warburg effect.


Subject(s)
Caloric Restriction/methods , Diet , Neoplasms/prevention & control , Warburg Effect, Oncologic , Animals , Clinical Trials as Topic , Glycolysis , Humans , Lactic Acid/metabolism , Neoplasms/diet therapy , Neoplasms/metabolism , Randomized Controlled Trials as Topic
19.
Front Mol Biosci ; 7: 153, 2020.
Article in English | MEDLINE | ID: mdl-32760737

ABSTRACT

Branched chain fatty acids perform very important functions in human diet and drug metabolism. they cannot be metabolized in mitochondria and are instead processed and degraded in peroxisomes due to the presence of methyl groups on the carbon chains. Oxidative degradation pathways for lipids include α- and ß-oxidation and several pathways. In all metabolic pathways, α-methyl acyl-CoA racemase (AMACR) plays an essential role by regulating the metabolism of lipids and drugs. AMACR regulates ß-oxidation of branched chain lipids in peroxisomes and mitochondria and promotes chiral reversal of 2-methyl acids. AMACR defects cause sensory-motor neuronal and liver abnormalities in humans. These phenotypes are inherited and are caused by mutations in AMACR. In addition, AMACR has been found to be overexpressed in prostate cancer. In addition, the protein levels of AMACR have increased significantly in many types of cancer. Therefore, AMACR may be an important marker in tumors. In this review, a comprehensive overview of AMACR studies in human disease will be described.

20.
Cell Death Differ ; 27(12): 3321-3336, 2020 12.
Article in English | MEDLINE | ID: mdl-32555448

ABSTRACT

The development of skeletal muscle requires progression of a highly ordered cascade of events comprising myogenic lineage commitment, myoblast proliferation, and terminal differentiation. The process of myogenesis is controlled by several myogenic transcription factors that act as terminal effectors of signaling cascades and produce appropriate developmental stage-specific transcripts. PHD finger protein 20 (PHF20) is a multidomain protein and subunit of a lysine acetyltransferase complex that acetylates histone H4 and p53, but its function is unclear. Notably, it has been reported that PHF20 knockout mice die shortly after birth and display a wide variety of phenotypes within the skeletal and hematopoietic systems. Therefore, the putative role of PHF20 in myogenic differentiation was further investigated. In the present study, we found that protein and mRNA expression levels of PHF20 were decreased during myogenic differentiation in C2C12 cells. At the same time, Yin Yang 1 (YY1) was also decreased during myogenic differentiation. PHF20 overexpression increased YY1 expression during myogenic differentiation, together with a delay in MyoD expression. PHF20 expression enhanced the transcriptional activity of YY1 while shRNA-mediated depletion of PHF20 resulted in the reduction of YY1 promoter activity in C2C12 cells. In addition, PHF20 directly bounds to the YY1 promoter in C2C12 cells. In a similar manner, YY1 expression was elevated while myosin heavy chain expression was decreased in PHF20 transgenic (TG) mice. Histological analysis revealed abnormalities in the shape and length of muscles in PHF20-TG mice. Furthermore, PHF20-TG muscles slowly regenerated after cardiotoxin injection, indicating that PHF20 affected muscle differentiation and regeneration after injury in vivo. Taken together, these results suggested that PHF20 plays an important role in myogenic differentiation by regulating YY1.


Subject(s)
Cell Differentiation/genetics , DNA-Binding Proteins/metabolism , Muscle Development/genetics , Transcription Factors/metabolism , YY1 Transcription Factor/metabolism , Animals , Cell Line , DNA-Binding Proteins/genetics , Histones/metabolism , Male , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , Regeneration , Transcription Factors/genetics , YY1 Transcription Factor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...