Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(8)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326554

ABSTRACT

Ba2SiO4-δN2/3δ:Eu2+ (BSON:Eu2+) materials with different N3- contents were successfully prepared and characterized. Rietveld refinements showed that N3- ions were partially substituted for the O2- ions in the SiO4-tetrahedra because the bond lengths of Si‒(O,N) (average value = 1.689 Å) were slightly elongated compared with those of Si‒O (average value = 1.659 Å), which resulted in the minute compression of the Ba(2)‒O bond lengths from 2.832 to 2.810 Å. The average N3- contents of BSON:Eu2+ phosphors were determined from 100 nm to 2000 nm depth of grain using a secondary ion mass spectrometry (SIMS): 0.064 (synthesized using 100% α-Si3N4), 0.035 (using 50% α-Si3N4 and 50% SiO2), and 0.000 (using 100% SiO2). Infrared (IR) and X-ray photoelectron spectroscopy (XPS) measurements corroborated the Rietveld refinements: the new IR mode at 850 cm-1 (Si‒N stretching vibration) and the binding energy at 98.6 eV (Si-2p) due to the N3- substitution. Furthermore, in UV-region, the absorbance of N3--substituted BSON:Eu2+ (synthesized using 100% α-Si3N4) phosphor was about two times higher than that of BSO:Eu2+ (using 100% SiO2). Owing to the N3- substitution, surprisingly, the photoluminescence (PL) and LED-PL intensity of BSON:Eu2+ (synthesized using 100% α-Si3N4) was about 5.0 times as high as that of BSO:Eu2+ (using 100% SiO2). The compressive strain estimated by the Williamson-Hall (W-H) method, was slightly increased with the higher N3- content in the host-lattice of Ba2SiO4, which warranted that the N3- ion plays an important role in the highly enhanced PL intensity of BSON:Eu2+ phosphor. These phosphor materials could be a bridgehead for developing new phosphors and application in white NUV-LEDs field.

2.
RSC Adv ; 9(68): 39589-39594, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-35541418

ABSTRACT

Finding new phosphors through an efficient method is important in terms of saving time and cost related to the development of phosphor materials. The ability to identify new phosphors through preliminary simulations by calculations prior to the actual synthesis of the materials can maximize the efficiency of novel phosphor development. In this paper, we demonstrate the use of density functional theory (DFT) calculations to guide the development of a new red phosphor. We performed first-principles calculations based on DFT for pristine and Mn-doped Rb x K3-x SiF7 (x = 0, 1, 2, 3) and predicted their stability, electronic structure, and luminescence properties. On the basis of the results, we then synthesized the stable Rb2KSiF7:Mn4+ red conversion phosphor and investigated its luminescence, structure, and stability. As a result, we confirmed that Rb2KSiF7:Mn4+ emitted red light with a longer wavelength than that emitted by K3SiF7:Mn4+ and a wavelength similar to that of K2SiF6:Mn4+. These results show that DFT calculations can provide rational insights into the design of a phosphor material before it is synthesized, thereby reducing the time and cost required to develop new red conversion phosphors.

3.
Inorg Chem ; 56(20): 12116-12128, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-28949134

ABSTRACT

Blue-emitting Ca2-xMgxSiO4:Ce (0.0 ≤ x ≤ 1.0) phosphors were successfully synthesized and characterized. Rietveld refinement revealed that four main phases exist within the solid-solution range of CaO-MgO-SiO2, namely, ß-Ca2SiO4 (Mg (x) = 0.0), Ca14Mg2(SiO4)8 (Mg (x) = 0.25), Ca3Mg(SiO4)2 (Mg (x) = 0.5), and CaMgSiO4 (Mg (x) = 1.0). The variation of the IR modes was more prominent with increasing Mg2+ content in the Ca2-xMgxSiO4 materials. The sharing of O atoms of the SiO4-tetrahedra by the MgO6-octahedra induced weakening of the Si-O bonds, which resulted in the red shift of the [SiO4] internal modes and appearance of a Mg-O stretching vibration at ∼418 cm-1. Raman measurement revealed that the change of the Ca-O bond lengths because of the Mg2+-substitution directly reflected the frequency shift of the Si-O stretching-Raman modes. Notably, the thermal stability of Ca2-xMgxSiO4:Ce (Mg (x) > 0.0) phosphors was superior to that of ß-Ca2SiO4:Ce (Mg (x) = 0.0) as confirmed by temperature-dependent photoluminescence (PL) measurements. This indicated that Mg2+ ions play an important role in enhancement of the thermal stability. In combination with the results from PL and electroluminescence (EL), it was elucidated that the luminous efficiency of Ca2-xMgxSiO4:Ce (Mg (x) = 0.1) was approximately twice as much as ß-Ca2SiO4:Ce (Mg (x) = 0.00), directly indicating a "Mg2+-substitution effect". The large enhancements of PL, EL, and thermal stability because of Mg2+-substitution may provide a platform in the discovery of more efficient phosphors for NUV-LEDs.

4.
ACS Appl Mater Interfaces ; 8(27): 17371-81, 2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27322133

ABSTRACT

In the search for well-defined phosphor materials for white NUV-LEDs, the highly enhanced luminous efficacy by N(3-) doping as well as color tunability via Ca substitution has been successfully obtained in Ba2-xCaxSiO4-δN2/3δ:Eu(2+) (x = 0.0, 0.5, 0.8, 1.0) phosphors. With increasing Ca-substitution rate, the crystal structures of the phosphor materials are changed from the primitive orthorhombic structure to the hexagonal one, so that the CIE coordinates move from bluish-green (at Ca = 0.0), to blue (at Ca = 0.5), and finally to near white region (at Ca = 0.8 and 1.0) in these materials. In combination with the results from X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy, the elemental distribution of the phosphor materials found from secondary-ion mass spectrometry (SIMS) directly indicates that the N(3-) ions are partially substituted for O(2-) ions into the crystal lattice of alkaline-earth orthosilicates and thus critically improves the color-tunable photoluminescence (PL) and electroluminescence (EL) efficiency of the phosphor materials for white NUV-LEDs. The newly found "the N(3-) doping and color-tunable effect" on large PL and EL enhancement may provide a platform in the discovery of new efficient phosphors for solid state lighting.

5.
J Nanosci Nanotechnol ; 13(3): 1794-7, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23755593

ABSTRACT

Divalent europium-activated strontium silicate (Sr2SiO4:Eu2+) phosphors were prepared at relatively low temperature via a conventional solid-state reaction method, in which BaF2 was used as both flux and component. The effect of BaF2 on XRD patterns and luminescent properties of Sr2SiO4:Eu2+ was investigated. BaF2 could enhance the emission intensity and change the wavelength of emission peaks. These phosphors showed yellow to green emission bands with the amounts of BaF2. With a combination of blue LED chip, these phosphors are still more efficient in the amount used than commercial phosphors when they are doped on the chips, indicating that they may become promising phosphor candidates for white LEDs.

6.
J Nanosci Nanotechnol ; 13(3): 1820-3, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23755598

ABSTRACT

Magnetic nanoparticles and fluorescent quantum dots (QDs) can make many effective applications in biomedical system. Here, we demonstrated one way of synthetic method and its surface modification to use for biomedical applications. Fe3O4 nanoparticles are well known as magnetic materials and its magnetic property can be used in magnetic resonance imaging (MRI), cell detection. QDs as a fluorescent probes, make cell labeling and in vivo imaging possible. ZnS/AgInS2 QDs have a lower toxicity than other QDs (CdSe, CdTe, CdS). We combined two nanoparticles by hydrophobic interaction in their ligands. The prepared fluorescent magnetic composite particles were modified with CTAB-TEOS. The surface modified composite has a low cytotoxicity and these biocompatible particles will provide many possibilities in biomedical system.

7.
J Nanosci Nanotechnol ; 13(3): 1867-70, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23755608

ABSTRACT

We demonstrated a novel synthetic route from Eu(2+)-doped oxy-nitride phosphors to prepare Eu(2+)-doped nitride phosphors. The Eu(2+)-doped Sr2Si5N8 phosphor was prepared by carbo-thermal reduction and nitridation from Eu(2+)-doped SrSi2O2N2 mixed with carbon. Eu(2+)-doped SrSi2O2N2 phosphor was prepared at 1350-1500 degrees C, and subsequently Eu(2+)-doped Sr2Si5N8 phosphor was synthesized at 1550-1700 degrees C. When over 4 wt% of carbon was added, the phase of SrSi2O2N2:Eu2+ changed to the one of Sr2Si5N8:Eu2+. The data of photoluminescent spectra and X-ray powder diffraction (XRD) patterns proved the phase transition. The product showed a red emission of 616 nm at the blue excitation of 450 nm. The shape of phosphor changed from a plate type to a rod one. We also prepared some red phosphors of SrSi(x)O(o)N(n):Eu2+ according to the different ratio of Si. Although the Si content was different from each other, there was no change in XRD patterns.

SELECTION OF CITATIONS
SEARCH DETAIL
...