Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 17(3): 974-84, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26809808

ABSTRACT

Poly(oxy(11-(biotinyl)undecylthiomethyl)ethylene-co-oxy(11-phosphoryl-cholineundecylthiomethyl)ethylene)s (PECH-BTmPCn: m = 0-100 mol % biotin (BT)-containing bristle; n = 100-0 mol % phosphorylcholine (PC)-containing bristle) were newly synthesized. All polymers exhibited excellent solution processability. They favorably self-assembled horizontal multibilayer structures in thin films with BT- and PC-enriched surfaces, which were driven by the lateral ordering of the fully extended upright bristles and the partial interdigitation between the BT and PC end groups of the bristles. Both hydrophilicity and water sorption of the films increased with the PC content. The PECH-BT100 films revealed remarkably distinctive sensitivity, selectivity, and adsorption ability for avidin against other proteins. Such remarkable performance was further significantly enhanced on the PECH-BTmPCn films in which PC moieties were incorporated to the BT-rich surface; in particular, the PECH-BT75PC25 films demonstrated the highest performance. Overall, the self-assembly brush copolymers of this study are very suitable for use in the high performance detection, adsorption, and separation of proteins and receptors, including avidin, which can reveal high affinity and selectivity to BT moiety.


Subject(s)
Biomimetic Materials/chemical synthesis , Biotin/analogs & derivatives , Biotin/chemistry , Phosphorylcholine/chemistry , Polyethylene Glycols/chemical synthesis , Polymers/chemical synthesis , Adsorption , Avidin/metabolism , Biomimetic Materials/chemistry , Biosensing Techniques/methods , Biotin/chemical synthesis , Polyethylene Glycols/chemistry , Polymers/chemistry , Protein Binding , Sensitivity and Specificity
2.
ACS Macro Lett ; 2(10): 849-855, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-35607002

ABSTRACT

An asymmetric nine-arm star polymer, (polystyrene)3-(poly(4-methoxystyrene))3-(polyisoprene)3 (PS3-PMOS3-PI3) was synthesized, and the details of the structures of its thin films were successfully investigated for the first time by using in situ grazing incidence X-ray scattering (GIXS) with a synchrotron radiation source. Our quantitative GIXS analysis showed that thin films of the star polymer molecules have very complex but highly ordered and preferentially in-plane oriented hexagonal (HEX) structures consisting of truncated PS cylinders and PMOS triangular prisms in a PI matrix. This HEX structure undergoes a partial rotational transformation process at temperatures above 190 °C that produces a 30°-rotated HEX structure; this structural isomer forms with a volume fraction of 23% during heating up to 220 °C and persists during subsequent cooling. These interesting and complex self-assembled nanostructures are discussed in terms of phase separation, arm number, volume ratio, and confinement effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...