Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Yeast Res ; 15(5): fov040, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26066554

ABSTRACT

The incidence of fungal infection and evolution of multidrug resistance have increased the need for new antifungal agents. To gain further insight into the development of antifungal drugs, the phenotypic profiles of currently available antifungal agents of three classes-ergosterol, cell wall and nucleic acid biosynthesis inhibitors-were investigated using yeast morphology as a chemogenomic signature. The comparison of drug-induced morphological changes with the deletion of 4718 non-essential genes not only confirmed the mode of action of the drugs but also revealed an unexpected connection among ergosterol, vacuolar proton-transporting V-type ATPase and cell-wall-targeting drugs. To improve, simplify and accelerate drug development, we developed a systematic classifier that sorts a newly discovered compound into a class with a similar mode of action without any mutant information. Using well-characterized agents as target unknown compounds, this method successfully categorized these compounds into their respective classes. Based on our data, we suggest that morphological profiling can be used to develop novel antifungal drugs.


Subject(s)
Antifungal Agents/pharmacology , Drug Resistance, Multiple, Fungal/genetics , Saccharomyces cerevisiae/drug effects , Antifungal Agents/classification , Cell Wall/drug effects , Ergosterol/antagonists & inhibitors , Microbial Sensitivity Tests , Nucleic Acids/biosynthesis , Nucleic Acids/drug effects , Saccharomyces cerevisiae/genetics , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors
2.
Mol Breed ; 31(1): 101-110, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23316112

ABSTRACT

Capsicum spp. are widely cultivated for use as vegetables and spices. The Kihara Institute for Biological Research, Yokohama City University, Japan, has stocks of approximately 800 lines of Capsicum spp. collected from various regions of Central and South America, the regions of origin for Capsicum spp. In this study, 5,751 primer pairs for simple sequence repeat markers, based on 118,060 publicly available sequences of expressed sequence tags of Capsicum annuum, were designed and subjected to a similarity search against the genomic sequence of tomato, a model Solanaceae species. Nucleotide sequences spanning 2,245 C. annuum markers were successfully mapped onto the tomato genome, and 96 of these, which spanned the entire tomato genome, were selected for further analysis. In genotyping analysis, 60 out of the 77 markers that produced specific DNA amplicons showed polymorphism among the Capsicum lines examined. On the basis of the resulting data, the 192 tested lines were grouped into five main clusters. The additional sequencing analysis of the plastid genes, matK and rbcL, divided the resources into three groups. As a result, 19 marker loci exhibited genotypes specific to species and cluster, suggesting that the DNA markers are useful for species identification. Information on the DNA markers will contribute to Capsicum genetics, genomics, and breeding. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-012-9774-z) contains supplementary material, which is available to authorized users.

SELECTION OF CITATIONS
SEARCH DETAIL
...