Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2402806, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552256

ABSTRACT

Cancer treatment requires precise tumor-specific targeting at specific sites that allows for high-resolution diagnostic imaging and long-term patient-tailorable cancer therapy; while, minimizing side effects largely arising from non-targetability. This can be realized by harnessing exogenous remote stimuli, such as tissue-penetrative ultrasound, magnetic field, light, and radiation, that enable local activation for cancer imaging and therapy in deep tumors. A myriad of nanomedicines can be efficiently activated when the energy of such remote stimuli can be transformed into another type of energy. This review discusses the remote control of energy transformation for targetable, efficient, and long-term cancer imaging and therapy. Such ultrasonic, magnetic, photonic, radiative, and radioactive energy can be transformed into mechanical, thermal, chemical, and radiative energy to enable a variety of cancer imaging and treatment modalities. The current review article describes multimodal energy transformation where a serial cascade or multiple types of energy transformation occur. This review includes not only mechanical, chemical, hyperthermia, and radiation therapy but also emerging thermoelectric, pyroelectric, and piezoelectric therapies for cancer treatment. It also illustrates ultrasound, magnetic resonance, fluorescence, computed tomography, photoluminescence, and photoacoustic imaging-guided cancer therapies. It highlights afterglow imaging that can eliminate autofluorescence for sustained signal emission after the excitation.

2.
Bioact Mater ; 34: 164-180, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38343773

ABSTRACT

Extracellular matrix (ECM) undergoes dynamic inflation that dynamically changes ligand nanospacing but has not been explored. Here we utilize ECM-mimicking photocontrolled supramolecular ligand-tunable Azo+ self-assembly composed of azobenzene derivatives (Azo+) stacked via cation-π interactions and stabilized with RGD ligand-bearing poly(acrylic acid). Near-infrared-upconverted-ultraviolet light induces cis-Azo+-mediated inflation that suppresses cation-π interactions, thereby inflating liganded self-assembly. This inflation increases nanospacing of "closely nanospaced" ligands from 1.8 nm to 2.6 nm and the surface area of liganded self-assembly that facilitate stem cell adhesion, mechanosensing, and differentiation both in vitro and in vivo, including the release of loaded molecules by destabilizing water bridges and hydrogen bonds between the Azo+ molecules and loaded molecules. Conversely, visible light induces trans-Azo+ formation that facilitates cation-π interactions, thereby deflating self-assembly with "closely nanospaced" ligands that inhibits stem cell adhesion, mechanosensing, and differentiation. In stark contrast, when ligand nanospacing increases from 8.7 nm to 12.2 nm via the inflation of self-assembly, the surface area of "distantly nanospaced" ligands increases, thereby suppressing stem cell adhesion, mechanosensing, and differentiation. Long-term in vivo stability of self-assembly via real-time tracking and upconversion are verified. This tuning of ligand nanospacing can unravel dynamic ligand-cell interactions for stem cell-regulated tissue regeneration.

3.
Chem Soc Rev ; 52(12): 3955-3972, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37218295

ABSTRACT

Ferroptosis, an iron-dependent programmed cell death mechanism, is regulated by distinct molecular pathways of lipid peroxidation caused by intracellular iron supplementation and glutathione (GSH) synthesis inhibition. It has attracted a great deal of attention as a viable alternative to typical apoptosis-based cancer therapy that exhibits drug resistance. For efficient therapeutic utilization of such a unique and desirable mechanism, precise control using various stimuli to activate the administered nanocarriers is essential. Specific conditions in the tumor microenvironment (e.g., acidic pH, high level of ROS and GSH, hypoxia, etc.) can be exploited as endogenous stimuli to ensure high specificity of the tumor site. Maximized spatiotemporal controllability can be assured by utilizing external energy sources (e.g., magnetic fields, ultrasound, microwaves, light, etc.) as exogenous stimuli that can provide on-demand remote controllability for customized deep tumor therapy with a low inter-patient variation. Strikingly, the utilization of dual endogenous and/or exogenous stimuli provides a new direction for efficient cancer therapy. This review highlights recent advances in the utilization of various endogenous and exogenous stimuli to activate the reactions of nanocarriers for ferroptosis-based cancer therapy that can inspire the field of cancer therapy, particularly for the treatment of intractable tumors.


Subject(s)
Ferroptosis , Neoplasms , Humans , Neoplasms/drug therapy , Apoptosis , Iron/metabolism , Tumor Microenvironment
4.
Biomed Pharmacother ; 163: 114780, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37105075

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancer types that is highly resistant to conventional treatments, such as chemotherapy and radiotherapy. As the demand for more effective therapeutics for PDAC treatment increases, various approaches have been studied to develop novel targets. The cellular communication network (CCN) family is a matricellular protein that modulates various cellular functions, including cell adhesion, proliferation, migration, and invasiveness. Despite this, little is known about the role of CCN6 in PDAC. The current study investigated the role of CCN6 in PDAC by generating CCN6-overexpressing PANC-1 cells (PANC-1-CCN6) by infecting lentivirus particles containing CCN6. PANC-1-CCN6 induces cell viability and tumorigenesis than PANC-1 cells with empty vector (control). The PANC-1-CCN6 formed more colonies, and the size of spheroids increased compared to the control. The upregulation of CCN6 enhances the expression of bone morphogenetic proteins (BMPs) genes and the upregulation of p38 mitogen-activated protein kinases (MAPKs). In PANC-1-CCN6 cells, the levels of N-cadherin, VEGF, and Snail expression were higher than the control, while E-cadherin expression was lower, which is associated with upregulation of epithelial-to-mesenchymal transition (EMT). Consistent with the changes in EMT-related proteins in PANC-1-CCN6, the migratory ability and invasiveness were enhanced in PANC-1-CCN6. Xenografted PANC-1-CCN6 in immunocompromised mice exhibited accelerated tumor growth than the control group. In immunohistochemistry (IHC), the PANC-1-CCN6 xenografted tumor showed an increased positive area of PCNA and Ki-67 than the control. These results suggest that CCN6 plays a tumorigenic role and induces the metastatic potential by the p38 MAPK and BMPs signaling pathways. Although the role of CCN6 has been introduced as an antitumor factor, there was evidence of CCN6 acting to cause tumorigenesis and invasion in PANC-1.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , Mice , Bone Morphogenetic Proteins , Carcinogenesis , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation , Epithelial-Mesenchymal Transition , Pancreatic Neoplasms/pathology , Signal Transduction , Mitogen-Activated Protein Kinase 14 , Pancreatic Neoplasms
5.
RSC Adv ; 13(8): 5219-5227, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36777944

ABSTRACT

An aluminum methylmethoxyphosphonate (AlPo)-based flame retardant (FR) was synthesized. Thermal degradation and flame retardancy of nylon 6 (PA6)/AlPo composites were examined and compared with PA6/commercial aluminum diethylphosphinate (AlPi) composites. The PA6/AlPo composite achieved a V-0 rating at 20 wt% loading during the UL-94 test, and it exhibited the formation of a charred layer that protected the polymer from burning and reduced the release of gases during the combustion of PA6. AlPo demonstrated exceptional performance in gaseous and condensed phases in the PA6 matrix, whereas AlPi only worked in the gaseous phase. The differences between the thermal degradation mechanisms and flame retardancies of AlPi and AlPo were investigated via Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and cone calorimetry. A suitable degradation mechanism was proposed to aid the development of flame retardants in the future.

6.
Front Endocrinol (Lausanne) ; 14: 1152579, 2023.
Article in English | MEDLINE | ID: mdl-38317714

ABSTRACT

The regulatory subunit of phosphatidylinositol 3-kinase (PI3K), known as p85, is a critical component in the insulin signaling pathway. Extensive research has shed light on the diverse roles played by the two isoforms of p85, namely p85α and p85ß. The gene pik3r1 encodes p85α and its variants, p55α and p50α, while pik3r2 encodes p85ß. These isoforms exhibit various activities depending on tissue types, nutrient availability, and cellular stoichiometry. Whole-body or liver-specific deletion of pik3r1 have shown to display increased insulin sensitivity and improved glucose homeostasis; however, skeletal muscle-specific deletion of p85α does not exhibit any significant effects on glucose homeostasis. On the other hand, whole-body deletion of pik3r2 shows improved insulin sensitivity with no significant impact on glucose tolerance. Meanwhile, liver-specific double knockout of pik3r1 and pik3r2 leads to reduced insulin sensitivity and glucose tolerance. In the context of obesity, upregulation of hepatic p85α or p85ß has been shown to improve glucose homeostasis. However, hepatic overexpression of p85α in the absence of p50α and p55α results in increased insulin resistance in obese mice. p85α and p85ß have distinctive roles in cancer development. p85α acts as a tumor suppressor, but p85ß promotes tumor progression. In the immune system, p85α facilitates B cell development, while p85ß regulates T cell differentiation and maturation. This review provides a comprehensive overview of the distinct functions attributed to p85α and p85ß, highlighting their significance in various physiological processes, including insulin signaling, cancer development, and immune system regulation.


Subject(s)
Hyperinsulinism , Insulin Resistance , Neoplasms , Mice , Animals , Insulin Resistance/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Class Ia Phosphatidylinositol 3-Kinase/genetics , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Mice, Knockout , Insulin/metabolism , Glucose , Protein Isoforms
7.
Mol Cells ; 45(12): 935-949, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36572562

ABSTRACT

Liver cancer has a high prevalence, with majority of the cases presenting as hepatocellular carcinoma (HCC). The prognosis of metastatic HCC has hardly improved over the past decade, highlighting the necessity for liver cancer research. Studies have reported the ability of the KiSS1 gene to inhibit the growth or metastasis of liver cancer, but contradictory research results are also emerging. We, therefore, sought to investigate the effects of KiSS1 on growth and migration in human HCC cells. HepG2 human HCC cells were infected with lentivirus particles containing KiSS1. The overexpression of KiSS1 resulted in an increased proliferation rate of HCC cells. Quantitative polymerase chain reaction and immunoblotting revealed increased Akt activity, and downregulation of the G1/S phase cell cycle inhibitors. A significant increase in tumor spheroid formation with upregulation of ß-catenin and CD133 was also observed. KiSS1 overexpression promoted the migratory, invasive ability, and metastatic capacity of the hepatocarcinoma cell line, and these effects were associated with changes in the expressions of epithelial mesenchymal transition (EMT)-related genes such as E-cadherin, N-cadherin, and slug. KiSS1 overexpression also resulted in dramatically increased tumor growth in the xenograft mouse model, and upregulation of proliferating cell nuclear antigen (PCNA) and Ki-67 in the HCC tumors. Furthermore, KiSS1 increased the angiogenic capacity by upregulation of the vascular endothelial growth factor A (VEGF-A) and CD31. Based on these observations, we infer that KiSS1 not only induces HCC proliferation, but also increases the metastatic potential by increasing the migratory ability and angiogenic capacity.


Subject(s)
Carcinoma, Hepatocellular , Kisspeptins , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Kisspeptins/genetics , Kisspeptins/metabolism , Liver Neoplasms/pathology , Vascular Endothelial Growth Factor A/genetics
8.
Cancers (Basel) ; 14(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36358638

ABSTRACT

Anti-programmed death-1 (PD-1) immunotherapy is one of the most promising therapeutic interventions for treating various tumors, including lung cancer, bladder cancer, and melanoma. However, only a subset of patients responds to anti-PD-1 therapy due to complicated immune regulation in tumors and the evolution of resistance. In the current study, we investigate the potential of a novel transforming growth factor-beta2 (TGF-ß2) antisense oligonucleotide (ngTASO), as a combination therapy with an anti-PD-1 antibody in melanoma. This study was conducted in a melanoma-bearing human immune system mouse model that recapitulates immune-excluded phenotypes. We observed that the TGF-ß2 blockade by ngTASO in combination with PD-1 inhibition downregulated the tumor intrinsic ß-catenin, facilitated the infiltration of CD8+ cytotoxic lymphocytes (CTLs) in the tumor, and finally, enhanced the antitumor immune potentials and tumor growth delays. Blockade of TGF-ß2 combined with PD-1 inhibition also resulted in downregulating the ratio of regulatory T cells to CTLs in the peripheral blood and tumor, resulting in increased granzyme B expression. In addition, co-treatment of ngTASO and anti-PD-1 augmented the PD-L1 expression in tumors, which is associated with an improved response to anti-PD-1 immunotherapy. These results indicate that the combination of ngTASO and anti-PD-1 exerts an enhanced T cell-mediated antitumor immune potential. Hence, co-inhibition of TGF-ß2 and PD-1 is a potentially promising immunotherapeutic strategy for immune-excluded melanoma.

9.
Toxicol Res ; 38(4): 511-522, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36277363

ABSTRACT

The heart has an abundance of mitochondria since cardiac muscles require copious amounts of energy for providing continuous blood through the circulatory system, thereby implying that myocardial function is largely reliant on mitochondrial energy. Thus, cardiomyocytes are susceptible to mitochondrial dysfunction and are likely targets of mitochondrial toxic drugs. Various methods have been developed to evaluate mitochondrial toxicity by evaluating toxicological mechanisms, but an optimized and standardized assay for cardiomyocytes remains unmet. We have therefore attempted to standardize the evaluation system for determining cardiac mitochondrial toxicity, using AC16 human and H9C2 rat cardiomyocytes. Three clinically administered drugs (acetaminophen, amiodarone, and valproic acid) and two anticancer drugs (doxorubicin and tamoxifen) which are reported to have mitochondrial effects, were applied in this study. The oxygen consumption rate (OCR), which directly reflects mitochondrial function, and changes in mRNA levels of mitochondrial respiratory complex I to complex V, were analyzed. Our results reveal that exposure to all five drugs results in a concentration-dependent decrease in the basal and maximal levels of OCR in AC16 cells and H9C2 cells. In particular, marked reduction in the OCR was observed after treatment with doxorubicin. The reduction in OCR after exposure to mitochondrial toxic drugs was found to be associated with reduced mRNA expression in the mitochondrial respiratory complexes, suggesting that the cardiac mitochondrial toxicity of drugs is majorly due to dysfunction of mitochondrial respiration. Based on the results of this study, we established and standardized a protocol to measure OCR in cardiomyocytes. We expect that this standardized evaluation system for mitochondrial toxicity can be applied as basic data for establishing a screening platform to evaluate cardiac mitochondrial toxicity of drugs, during the developmental stage of new drug discovery.

10.
Life Sci ; 310: 121009, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36181862

ABSTRACT

Metastatic prostate cancers have a high mortality rate. KiSS1 was originally identified as a metastasis suppressor gene in metastatic melanoma and breast cancer, but its role in prostate cancer has been contradictory. This study was therefore undertaken to investigate the effects of KiSS1 overexpression on the growth and migration of human metastatic prostate cancer cells. We first tested the effect of KiSS1 overexpression on the growth and migration of DU145 human metastatic prostate cancer cells in vitro. DU145 cells were infected with the culture medium of 293T cells, which produce lentivirus particles containing KiSS1. A 2.5-fold increase in proliferation of KiSS1-overexpressing cancer cells was observed, and these cells formed tumor spheroids about 3 times larger than the vector control group. qPCR and immunoblotting revealed the association between increased cell growth and regulation of the PI3K/Akt and cell cycle genes, and also that increases in ß-catenin and CD133 contribute to tumor aggregation. KiSS1 overexpression resulted in upregulation of the ß-arrestin1/2 and Raf-MEK-ERK-NF-κB pathways via KiSS1R. Moreover, the migration and invasion of KiSS1-overexpressing cells were determined to be faster than the control group, along with 1.6-fold increased metastatic colonization of the KiSS1-overexpressing cancer cells. These were associated to the regulation of EMT gene expressions, such as E-cadherin and N-cadherin, and the upregulation of MMP9. In a xenograft mouse model inoculated with DU145 cells infected GFP or KiSS1 via a lentiviral vector, KiSS1 statistically significantly increased the tumor growth, with upregulation of PCNA and Ki-67 in the tumor tissues. In addition, KiSS1 increased the angiogenic capacity by upregulating VEGF-A and CD31, both in vitro and in vivo. Taken together, our results indicate that KiSS1 not only induces prostate cancer proliferation, but also promotes metastasis by increasing the migration, invasion, and angiogenesis of malignant cells.


Subject(s)
Kisspeptins , Prostatic Neoplasms , Animals , Humans , Male , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Kisspeptins/genetics , Kisspeptins/metabolism , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/pathology
11.
Life Sci ; 305: 120754, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35780843

ABSTRACT

Fenhexamid (Fen) is used to eradicate gray mold of fruits and vegetables leading to greater detection of its residual concentration in wine than other fungicides. Here, we further investigated the malign influence of Fen on the migration and angiogenesis via regulation of the estrogen receptor (ER) and phosphoinositide 3-kinase (PI3K) pathways in breast cancer models. ER-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells were exposed to 17ß-estradiol (E2, 10-9 M), Fen (10-5 M and 10-7 M), ICI 182,780 (ICI; an ER antagonist, 10-8 M) or/and Pictilisib (Pic; a PI3K inhibitor, 10-7 M), and subsequently subjected to migration assay, live cell motility monitoring, trans-chamber assay, immunofluorescence, angiogenesis assay, tumor spheroid formation, and Western blot analysis. In MCF-7 cells, E2 and Fen induced cell migration by regulating the cell migration-related proteins. Although expressions of N-cadherin and Vimentin remained unchanged E2 and Fen induced the decrease of E-cadherin and Occludin in the immunofluorescence assay and Western blot analysis. In addition, Fen increased vessel formation in HUVEC cells. Furthermore, Fen treatment induced the formation of larger and denser tumor spheroids in MCF-7 cells. Western blot further confirmed the increased expressions of vascular endothelial growth factor (VEGF) and sex-determining region Y-box 2 (SOX2) after exposure to Fen. We conclude that Fen plays an important role as an endocrine-disrupting chemical in breast cancer migration and metastasis through the regulation of ER and PI3K signaling pathways.


Subject(s)
Breast Neoplasms , Fungicides, Industrial , Amides , Breast Neoplasms/pathology , Cell Line, Tumor , Estradiol/pharmacology , Female , Humans , Neovascularization, Pathologic , Phosphatidylinositol 3-Kinases , Receptors, Estrogen/metabolism , Vascular Endothelial Growth Factor A
12.
Toxicol In Vitro ; 83: 105393, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35618243

ABSTRACT

Mitochondria are important cytoplasmic elements present in eukaryotic cells, and are involved in converting energy to ATP through oxidative phosphorylation. Mitochondria are vulnerable to reactive oxygen species (ROS), thereby making it imperative to evaluate the toxicity. However, existing methods that evaluate mitochondrial toxicity in cardiomyocytes are limited. In the current study, we aimed to determine a mitochondrial biomarker that measures the toxicity of mitochondria, and subsequently suggest an efficient evaluation system for evaluating mitochondrial-specific oxidative toxicity. To achieve this, AC16 human cardiomyocytes, H9C2 rat cardiomyocytes were exposed to acetaminophen (AP), amiodarone hydrochloride (AMD), doxorubicin hydrochloride (Dox), valproic acid sodium salt (Val), and (Z)-4-hydroxytamoxifen (4-OHT). Mitochondrial oxidative stress was determined by staining the drug-treated cells with MitoSOX™ red fluorescence dye, followed by imaging with a fluorescence microscope. All working concentrations of Dox showed increased levels of red fluorescence in AC16 and H9C2 cells, whereas exposure to Val did not alter the red fluorescence level of both cells. Considering our results, increased MitoSOX™ subsequent to drug exposure is a highly reproducible and reliable method to measure the mitochondrial-specific oxidative toxicity. These results indicate that a screening system using MitoSOX™ has the potential to be applied as a reliable biomarker for determining mitochondrial oxidative toxicity in new drug development.


Subject(s)
Myocytes, Cardiac , Superoxides , Animals , Doxorubicin/toxicity , Humans , Mammals , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress , Rats , Reactive Oxygen Species/metabolism , Superoxides/metabolism
13.
J Microbiol Biotechnol ; 32(5): 594-601, 2022 May 28.
Article in English | MEDLINE | ID: mdl-35484970

ABSTRACT

This study evaluated the biological properties of lemongrass (Cymbopogon citratus) extracts. The EtOAc extract of lemongrass had DPPH, TEAC, and nitric oxide-scavenging activity assay results of 58.06, 44.14, and 41.08% at the concentration of 50, 10, and 50 µg/ml, respectively. The EtOAc extract had higher elastase and collagenase inhibitory activities than the 80% MeOH, n-hexane, BuOH, and water extracts and comparable whitening activity toward monophenolase or diphenolase. Also, the EtOAc fraction had higher lipase inhibitory and antimicrobial activities against Cutibacterium acnes among extracts which is known to an important contributor to the progression of inflammatory acne vulgaris, and an opportunistic pathogen present in human skin. Total phenolic and flavonoid concentrations in the EtOAc extract were 132.31 mg CAE/g extract and 104.50 mg NE/g extract, respectively. Biologically active compounds in lemongrass extracts were analyzed by LC-MS. This study confirms that lemongrass extracts have potential use as cosmetic skincare ingredients. Thus, lemongrass can be considered a promising natural source of readily available, low-cost extracts rich in antioxidant, skincare, and antimicrobial compounds that might be suitable for replacing synthetic compounds in the cosmeceutical industry.


Subject(s)
Acne Vulgaris , Anti-Infective Agents , Cosmetics , Cymbopogon , Acne Vulgaris/drug therapy , Acne Vulgaris/microbiology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Cymbopogon/chemistry , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology
14.
Cancer Immunol Immunother ; 71(9): 2213-2226, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35099588

ABSTRACT

Transforming growth factor-beta (TGF-ß) pathway mediates suppression of antitumor immunity and is associated with poor prognosis in triple-negative breast cancer (TNBC). In this study, we generated a humanized animal model by transplanting human peripheral blood mononuclear cells into immunodeficient mice followed by inoculation of MDA-MB-231 cells and subsequently analyzed the role of TGF-ß2 in the interaction between human T cells and human tumor cells. Following reconstitution of the human immune system, inhibition of TGF-ß signaling by TGF-ß2 antisense oligodeoxynucleotide (TASO) resulted in accelerated tumor growth inhibition. TGF-ß2 inhibition also resulted in downregulation of peripheral Foxp3 + regulatory T cells (Treg), whereas no effect was seen in the expression of CD8 + cytotoxic T cells. Analysis of the TASO-treated mice serum revealed elevated levels of human IFN-γ and reduced levels of human IL-10 and TGF-ß2. Moreover, TGF-ß2 inhibition resulted in increased CD8 + T cell infiltration, whereas the reduced infiltration of Tregs into the tumor partly resulted from decreased expression of CCL22. Decreased intratumoral Tregs facilitated the activation of cytotoxic T cells, associated with increased granzyme B expression. These results indicate that TASO potentiated T cell-mediated antitumor immunity, and it is proposed that TGF-ß2 may be a promising target in the immunotherapeutic strategy of TNBC.


Subject(s)
Oligodeoxyribonucleotides, Antisense , Transforming Growth Factor beta2 , Triple Negative Breast Neoplasms , Animals , Disease Models, Animal , Humans , Leukocytes, Mononuclear/metabolism , Mice , Oligodeoxyribonucleotides, Antisense/pharmacology , T-Lymphocytes, Regulatory , Transforming Growth Factor beta2/antagonists & inhibitors , Triple Negative Breast Neoplasms/pathology
15.
Biomol Ther (Seoul) ; 30(3): 213-220, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35039464

ABSTRACT

Although there have been advances in cancer therapy and surgical improvement, lung cancer has the lowest survival rate (19%) at all stages. This is because most patients are diagnosed with concurrent metastasis, which occurs due to numerous related reasons. Especially, lung cancer is one of the most common and malignant cancers in the world. Although there are advanced therapeutic strategies, lung cancer remains one of the main causes of cancer death. Recent work has proposed that epithelialmesenchymal transition (EMT) is the main cause of metastasis in most cases of human cancers including lung cancer. EMT involves the conversion of epithelial cells, wherein the cells lose their epithelial abilities and become mesenchymal cells involved in embryonic development, such as gastrulation and neural crest formation. In addition, recent research has indicated that EMT contributes to altering the cancer cells into cancer stem cells (CSCs). Although EMT is important in the developmental stages, this process also activates lung cancer progression, including complicated and diverse signaling pathways. Despite the numerous investigations on signaling pathways involved in the progression of lung cancer, this malignancy is considered critical for treatment. EMT in lung cancer involves many transcription factors and inducers, for example, Snail, TWIST, and ZEB are the master regulators of EMT. EMT-related factors and signaling pathways are involved in the progression of lung cancer, proposing new approaches to lung cancer therapy. In the current review, we highlight the signaling pathways implicated in lung cancer and elucidate the correlation of these pathways, indicating new insights to treat lung cancer and other malignancies.

16.
Biomol Ther (Seoul) ; 30(2): 151-161, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34261818

ABSTRACT

This study elucidates the anti-cancer potential of gallic acid (GA) as a promising therapeutic agent that exerts its effect by regulating the PI3K/Akt pathway. To prove our research rationale, we used diverse experimental methods such as cell viability assay, colony formation assay, tumor spheroid formation assay, cell cycle analysis, TUNEL assay, Western blot analysis, xenograft mouse model and histological analysis. Treatment with GA inhibited cell proliferation in dose-dependent manner as measured by cell viability assay at 48 h. GA and cisplatin (CDDP) also inhibited colony formation and tumor spheroid formation. In addition, GA and CDDP induced apoptosis, as determined by the distribution of early and late apoptotic cells and DNA fragmentation. Western blot analysis revealed that inhibition of the PI3K/Akt pathway induced upregulation of p53 (tumor suppressor protein), which in turn regulated cell cycle related proteins such as p21, p27, Cyclin D1 and E1, and intrinsic apoptotic proteins such as Bax, Bcl-2 and cleaved caspase-3. The anti-cancer effect of GA was further confirmed in an in vivo mouse model. Intraperitoneal injection with GA for 4 weeks in an A549-derived tumor xenograft model reduced the size of tumor mass. Injection of them downregulated the expression of proliferating cell nuclear antigen and p-Akt, but upregulated the expression of cleaved caspase-3 in tumor tissues. Taken together, these results indicated that GA hindered lung cancer progression by inducing cell cycle arrest and apoptosis, suggesting that GA would be a potential therapeutic agent against non-small cell lung cancer.

17.
Nutrients ; 13(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34578851

ABSTRACT

Iridoids are glycosides found in plants, having inherent roles in defending them against infection by viruses and microorganisms, and in the rapid repair of damaged areas. The emerging roles of iridoid glycosides on pharmacological properties have aroused the curiosity of many researchers, and studies undertaken indicate that iridoid glycosides exert inhibitory effects in numerous cancers. This review focuses on the roles and the potential mechanism of iridoid glycosides at each stage of cancer development such as proliferation, epithelial mesenchymal transition (EMT), migration, invasion and angiogenesis. Overall, the reviewed literature indicates that iridoid glycosides inhibit cancer growth by inducing cell cycle arrest or by regulating apoptosis-related signaling pathways. In addition, iridoid glycosides suppress the expression and activity of matrix metalloproteinases (MMPs), resulting in reduced cancer cell migration and invasiveness. The antiangiogenic mechanism of iridoid glycosides was found to be closely related to the transcriptional regulation of pro-angiogenic factors, i.e., vascular endothelial growth factors (VEGFs) and cluster of differentiation 31 (CD31). Taken together, these results indicate the therapeutic potential of iridoid glycosides to alleviate or prevent rapid cancer progression and metastasis.


Subject(s)
Iridoid Glycosides/pharmacology , Neoplasm Metastasis/prevention & control , Neoplasms/drug therapy , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Disease Progression , Humans
18.
Can J Vet Res ; 85(3): 177-185, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34248261

ABSTRACT

From 50 to 60% of companion animals in the United States are overweight or obese and this obesity rate is rising. As obesity is associated with a number of health problems, an agent that can help weight loss in pets and assist in clinically managing obesity through veterinary prescription foods and medication would be beneficial. Many studies have shown that celastrol, a phytochemical compound found in Celastrus orbiculatus extract (COE), has anti-obesity and anti-inflammatory effects, although these effects have not yet been determined in canine or canine-derived cells. The objective of this study was to investigate the effects of celastrol on the adipogenic differentiation and lipolysis of canine adipocytes. Primary preadipocytes were isolated from the gluteal region of a beagle dog and the primary adipocytes were differentiated into mature adipocytes by adipocyte differentiation media containing isobutylmethylxanthine, dexamethasone, and insulin. In a water-soluble tetrazolium (WST) assay, the cell viability of mature adipocytes was decreased after treatment with COE (0, 0.93, 2.32, and 4.64 nM celastrol) in a concentration-dependent manner, although preadipocytes were not affected. Oil Red O (ORO) staining revealed that COE inhibited the differentiation into mature adipocytes and lipid accumulation in adipocytes. In addition, treatment with COE significantly reduced triglyceride content and increased lipolytic activities by 1.5-fold in canine adipocytes. Overall, it was concluded that COE may enhance anti-obesity activity in canine adipocytes by inhibiting lipid accumulation and increasing lipolytic activity.


De 50 à 60 % des animaux de compagnie aux États-Unis sont en surpoids ou obèses et ce taux d'obésité est en augmentation. Comme l'obésité est associée à un certain nombre de problèmes de santé, un agent qui peut aider à la perte de poids chez les animaux de compagnie et à la gestion clinique de l'obésité au moyen d'aliments et de médicaments sur ordonnance vétérinaire serait bénéfique. De nombreuses études ont montré que le célastrol, un composé phytochimique présent dans l'extrait de Celastrus orbiculatus (COE), a des effets anti-obésité et anti-inflammatoires, bien que ces effets n'aient pas encore été déterminés dans les cellules canines ou dérivées de canins. L'objectif de cette étude était d'étudier les effets du célastrol sur la différenciation adipogène et la lipolyse des adipocytes canins. Des pré-adipocytes primaires ont été isolés de la région fessière d'un chien beagle et les adipocytes primaires ont été différenciés en adipocytes matures par des milieux de différenciation adipocytaires contenant de l'isobutylméthylxanthine, de la dexaméthasone et de l'insuline. Dans un essai au tétrazolium hydrosoluble (WST), la viabilité cellulaire des adipocytes matures a diminué après traitement avec du COE (0, 0,93, 2,32 et 4,64 nM de célastrol) d'une manière dépendante de la concentration, bien que les pré-adipocytes n'aient pas été affectés. La coloration Oil Red O (ORO) a révélé que le COE inhibait la différenciation en adipocytes matures et l'accumulation de lipides dans les adipocytes. De plus, le traitement avec le COE a considérablement réduit la teneur en triglycérides et augmenté les activités lipolytiques de 1,5 fois dans les adipocytes canins. Dans l'ensemble, il a été conclu que le COE peut améliorer l'activité anti-obésité dans les adipocytes canins en inhibant l'accumulation de lipides et en augmentant l'activité lipolytique.(Traduit par Docteur Serge Messier).


Subject(s)
Adipocytes/drug effects , Anti-Obesity Agents/pharmacology , Celastrus/chemistry , Dogs , Plant Extracts/pharmacology , Adipogenesis , Animals , Anti-Obesity Agents/chemistry , Cell Survival/drug effects , Cells, Cultured , Plant Extracts/chemistry
19.
Cytotherapy ; 23(7): 599-607, 2021 07.
Article in English | MEDLINE | ID: mdl-33975794

ABSTRACT

BACKGROUND AIMS: IL-2 is a potent cytokine that activates natural killer cells and CD8+ cytotoxic T lymphocytes (CTLs) and has been approved for the treatment of metastatic renal cell carcinoma and metastatic melanoma. However, the medical use of IL-2 is restricted because of its narrow therapeutic window and potential side effects, including the expansion of regulatory T cells (Tregs). METHODS: In this study, the authors investigated the complementary effects of transforming growth factor-ß2 (TGF-ß2) anti-sense oligodeoxynucleotide (TASO) on the immunotherapeutic potential of IL-2 in a melanoma-bearing humanized mouse model. RESULTS: The authors observed that the combination of TASO and IL-2 facilitated infiltration of CTLs into the tumor, thereby potentiating the tumor killing function of CTLs associated with increased granzyme B expression. In addition, TASO attenuated the increase in Tregs by IL-2 in the peripheral blood and spleen and also inhibited infiltration of Tregs into the tumor, which was partly due to decreased CCL22. Alteration of T-cell constituents at the periphery by TGF-ß2 inhibition combined with IL-2 might be associated with the synergistic augmentation of serum pro-inflammatory cytokines (such as interferon Î³ and tumor necrosis factor α) and decreased ratio of Tregs to CTLs in tumor tissues, which consequently results in significant inhibition of tumor growth CONCLUSIONS: These results indicate that the application of TASO improves IL-2-mediated anti-tumor immunity, thus implying that blockade of TGF-ß2 in combination with IL-2 may be a promising immunotherapeutic strategy for melanoma.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Melanoma , Oligonucleotides, Antisense , Animals , Immunotherapy , Interleukin-2 , Melanoma/therapy , Mice , Transforming Growth Factor beta , Transforming Growth Factor beta2/antagonists & inhibitors , Transforming Growth Factor beta2/genetics , Transforming Growth Factors
20.
Life Sci ; 277: 119607, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33992675

ABSTRACT

Mitochondria are organelles that play a pivotal role in the production of energy in cells, and vital to the maintenance of cellular homeostasis due to the regulation of many biochemical processes. The heart contains a lot of mitochondria because those muscles require a lot of energy to keep supplying blood through the circulatory system, implying that the energy generated from mitochondria is highly dependent. Thus, cardiomyocytes are sensitive to mitochondrial dysfunction and are likely to be targeted by mitochondrial toxic drugs. It has been reported that some anticancer drugs caused unwanted toxicity to mitochondria. Mitochondrial dysfunction is related to aging and the onset of many diseases, such as obesity, diabetes, cancer, cardiovascular and neurodegenerative diseases. Mitochondrial toxic mechanisms can be mainly explained concerning reactive oxygen species (ROS)/redox status, calcium homeostasis, and endoplasmic reticulum stress (ER) stress signaling. The toxic mechanisms of many anticancer drugs have been revealed, but more studying and understanding of the mechanisms of drug-induced mitochondrial toxicity is required to develop mitochondrial toxicity screening system as well as novel cardioprotective strategies for the prevention of cardiac disorders of drugs. This review focuses on the cardiac mitochondrial toxicity of commonly used anticancer drugs, i.e., doxorubicin, mitoxantrone, cisplatin, arsenic trioxide, and cyclophosphamide, and their possible chemopreventive agents that can prevent or alleviate cardiac mitochondrial toxicity.


Subject(s)
Antineoplastic Agents/adverse effects , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Arsenic Trioxide/pharmacology , Cardiotoxicity/metabolism , Cardiovascular System/drug effects , Doxorubicin/pharmacology , Endoplasmic Reticulum Stress/drug effects , Heart Diseases/metabolism , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria, Heart/drug effects , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...