Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 10(11)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182565

ABSTRACT

Above all, we would like to express our sincere thanks and appreciation for writing your comment on our research [...].

2.
Diagnostics (Basel) ; 10(7)2020 Jul 12.
Article in English | MEDLINE | ID: mdl-32664658

ABSTRACT

PURPOSE: To study the effect of the infusion of normal saline on hemodynamic changes in healthy volunteers using computational fluid dynamics (CFD) simulation. METHODS: Eight healthy subjects participated and 16 carotid arteries were used for the CFD analysis. A one-liter intravenous infusion of normal saline was applied to the participants to observe the hemodynamic variations. Blood viscosity was measured before and after the injection of normal saline to apply the blood properties on the CFD modeling. Blood viscosity, shear rate, and wall shear stress were visually and quantitatively shown for the comparison between before and after the infusion of normal saline. Statistical analyses were performed to confirm the difference between the before and after groups. RESULTS: After the infusion of normal saline, decreased blood viscosity was observed in the whole carotid artery. At the internal carotid artery, the recirculation zone with low intensity was found after the injection of normal saline. Increased shear rate and reduced wall shear stress was observed at the carotid bifurcation and internal carotid artery. The hemodynamic differences between before and after groups were statistically significant. CONCLUSIONS: The infusion of normal saline affected not only the overall changes of blood flow in the carotid artery but also the decrease of blood viscosity.

3.
Diagnostics (Basel) ; 9(4)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847224

ABSTRACT

PURPOSE: Knowledge of the hemodynamics in the vascular system is important to understand and treat vascular pathology. The present study aimed to evaluate the hemodynamics in the human carotid artery bifurcation measured by four-dimensional (4D) flow magnetic resonance imaging (MRI) as compared to computational fluid dynamics (CFD). METHODS: This protocol used MRI data of 12 healthy volunteers for the 3D vascular models and 4D flow MRI measurements for the boundary conditions in CFD simulation. We compared the velocities measured at the carotid bifurcation and the 3D velocity streamlines of the carotid arteries obtained by these two methods. RESULTS: There was a good agreement for both maximum and minimum velocity values between the 2 methods for velocity magnitude at the bifurcation plane. However, on the 3D blood flow visualization, secondary flows, and recirculation regions are of poorer quality when visualized through the 4D flow MRI. CONCLUSION: 4D flow MRI and CFD show reasonable agreement in demonstrated velocity magnitudes at the carotid artery bifurcation. However, the visualization of blood flow at the recirculation regions and the assessment of secondary flow characteristics should be enhanced for the use of 4D flow MRI in clinical situations.

SELECTION OF CITATIONS
SEARCH DETAIL
...