Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(27): 13249-13254, 2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31160468

ABSTRACT

The CuO2 antiferromagnetic insulator is transformed by hole-doping into an exotic quantum fluid usually referred to as the pseudogap (PG) phase. Its defining characteristic is a strong suppression of the electronic density-of-states D(E) for energies |E| < [Formula: see text], where [Formula: see text] is the PG energy. Unanticipated broken-symmetry phases have been detected by a wide variety of techniques in the PG regime, most significantly a finite-Q density-wave (DW) state and a Q = 0 nematic (NE) state. Sublattice-phase-resolved imaging of electronic structure allows the doping and energy dependence of these distinct broken-symmetry states to be visualized simultaneously. Using this approach, we show that even though their reported ordering temperatures T DW and T NE are unrelated to each other, both the DW and NE states always exhibit their maximum spectral intensity at the same energy, and using independent measurements that this is the PG energy [Formula: see text] Moreover, no new energy-gap opening coincides with the appearance of the DW state (which should theoretically open an energy gap on the Fermi surface), while the observed PG opening coincides with the appearance of the NE state (which should theoretically be incapable of opening a Fermi-surface gap). We demonstrate how this perplexing phenomenology of thermal transitions and energy-gap opening at the breaking of two highly distinct symmetries may be understood as the natural consequence of a vestigial nematic state within the pseudogap phase of Bi2Sr2CaCu2O8.

2.
Proc Natl Acad Sci U S A ; 112(5): 1316-21, 2015 Feb 03.
Article in English | MEDLINE | ID: mdl-25605947

ABSTRACT

To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a "Dirac-mass gap" in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr0.08(Bi0.1Sb0.9)1.92Te3. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship [Formula: see text] is confirmed throughout and exhibits an electron-dopant interaction energy J* = 145 meV·nm(2). These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.

3.
Proc Natl Acad Sci U S A ; 111(30): E3026-32, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-24989503

ABSTRACT

The identity of the fundamental broken symmetry (if any) in the underdoped cuprates is unresolved. However, evidence has been accumulating that this state may be an unconventional density wave. Here we carry out site-specific measurements within each CuO2 unit cell, segregating the results into three separate electronic structure images containing only the Cu sites [Cu(r)] and only the x/y axis O sites [Ox(r) and O(y)(r)]. Phase-resolved Fourier analysis reveals directly that the modulations in the O(x)(r) and O(y)(r) sublattice images consistently exhibit a relative phase of π. We confirm this discovery on two highly distinct cuprate compounds, ruling out tunnel matrix-element and materials-specific systematics. These observations demonstrate by direct sublattice phase-resolved visualization that the density wave found in underdoped cuprates consists of modulations of the intraunit-cell states that exhibit a predominantly d-symmetry form factor.

4.
Science ; 344(6184): 612-6, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24812397

ABSTRACT

The existence of electronic symmetry breaking in the underdoped cuprates and its disappearance with increased hole density p are now widely reported. However, the relation between this transition and the momentum-space (k-space) electronic structure underpinning the superconductivity has not yet been established. Here, we visualize the Q = 0 (intra-unit-cell) and Q ≠ 0 (density-wave) broken-symmetry states, simultaneously with the coherent k-space topology, for Bi2Sr2CaCu2O(8+δ) samples spanning the phase diagram 0.06 ≤ p ≤ 0.23. We show that the electronic symmetry-breaking tendencies weaken with increasing p and disappear close to a critical doping p(c) = 0.19. Concomitantly, the coherent k-space topology undergoes an abrupt transition, from arcs to closed contours, at the same p(c). These data reveal that the k-space topology transformation in cuprates is linked intimately with the disappearance of the electronic symmetry breaking at a concealed critical point.

5.
Nature ; 466(7304): 347-51, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20631795

ABSTRACT

In the high-transition-temperature (high-T(c)) superconductors the pseudogap phase becomes predominant when the density of doped holes is reduced. Within this phase it has been unclear which electronic symmetries (if any) are broken, what the identity of any associated order parameter might be, and which microscopic electronic degrees of freedom are active. Here we report the determination of a quantitative order parameter representing intra-unit-cell nematicity: the breaking of rotational symmetry by the electronic structure within each CuO(2) unit cell. We analyse spectroscopic-imaging scanning tunnelling microscope images of the intra-unit-cell states in underdoped Bi(2)Sr(2)CaCu(2)O(8 +) (delta) and, using two independent evaluation techniques, find evidence for electronic nematicity of the states close to the pseudogap energy. Moreover, we demonstrate directly that these phenomena arise from electronic differences at the two oxygen sites within each unit cell. If the characteristics of the pseudogap seen here and by other techniques all have the same microscopic origin, this phase involves weak magnetic states at the O sites that break 90 degrees -rotational symmetry within every CuO(2) unit cell.

6.
Science ; 325(5944): 1099-103, 2009 Aug 28.
Article in English | MEDLINE | ID: mdl-19713522

ABSTRACT

A possible explanation for the existence of the cuprate "pseudogap" state is that it is a d-wave superconductor without quantum phase rigidity. Transport and thermodynamic studies provide compelling evidence that supports this proposal, but few spectroscopic explorations of it have been made. One spectroscopic signature of d-wave superconductivity is the particle-hole symmetric "octet" of dispersive Bogoliubov quasiparticle interference modulations. Here we report on this octet's evolution from low temperatures to well into the underdoped pseudogap regime. No pronounced changes occur in the octet phenomenology at the superconductor's critical temperature Tc, and it survives up to at least temperature T approximately 1.5 Tc. In this pseudogap regime, we observe the detailed phenomenology that was theoretically predicted for quasiparticle interference in a phase-incoherent d-wave superconductor. Thus, our results not only provide spectroscopic evidence to confirm and extend the transport and thermodynamics studies, but they also open the way for spectroscopic explorations of phase fluctuation rates, their effects on the Fermi arc, and the fundamental source of the phase fluctuations that suppress superconductivity in underdoped cuprates.

SELECTION OF CITATIONS
SEARCH DETAIL
...