Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Genom Precis Med ; 15(6): e003719, 2022 12.
Article in English | MEDLINE | ID: mdl-36252106

ABSTRACT

BACKGROUND: KCNH2-mediated arrhythmia syndromes are caused by loss-of-function (type 2 long QT syndrome [LQT2]) or gain-of-function (type 1 short QT syndrome [SQT1]) pathogenic variants in the KCNH2-encoded Kv11.1 potassium channel, which is essential for the cardiac action potential. METHODS: A dual-component "suppression-and-replacement" (SupRep) KCNH2 gene therapy was created by cloning into a single construct a custom-designed KCNH2 short hairpin RNA with ~80% knockdown (suppression) and a "short hairpin RNA-immune" KCNH2 cDNA (replacement). Induced pluripotent stem cell-derived cardiomyocytes and their CRISPR-Cas9 variant-corrected isogenic control (IC) induced pluripotent stem cell-derived cardiomyocytes were made for 2 LQT2- (G604S, N633S) and 1 SQT1- (N588K) causative variants. All variant lines were treated with KCNH2-SupRep or non-targeting control short hairpin RNA (shCT). The action potential duration (APD) at 90% repolarization (APD90) was measured using FluoVolt voltage dye. RESULTS: KCNH2-SupRep achieved variant-independent rescue of both pathologic phenotypes. For LQT2-causative variants, treatment with KCNH2-SupRep resulted in shortening of the pathologically prolonged APD90 to near curative (IC-like) APD90 levels (G604S IC, 471±25 ms; N633S IC, 405±55 ms) compared with treatment with shCT (G604S: SupRep-treated, 452±76 ms versus shCT-treated, 550±41 ms; P<0.0001; N633S: SupRep-treated, 399±105 ms versus shCT-treated, 577±39 ms, P<0.0001). Conversely, for the SQT1-causative variant, N588K, treatment with KCNH2-SupRep resulted in therapeutic prolongation of the pathologically shortened APD90 (IC: 429±16 ms; SupRep-treated: 396±61 ms; shCT-treated: 274±12 ms). CONCLUSIONS: We provide the first proof-of-principle gene therapy for correction of both LQT2 and SQT1. KCNH2-SupRep gene therapy successfully normalized the pathologic APD90, thereby eliminating the pathognomonic feature of both LQT2 and SQT1.


Subject(s)
Arrhythmias, Cardiac , Long QT Syndrome , Humans , ERG1 Potassium Channel/genetics , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/therapy , Long QT Syndrome/genetics , Long QT Syndrome/therapy , Genetic Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...