Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36986811

ABSTRACT

The present study aimed to develop clear aqueous rebamipide (REB) eye drops to enhance solubility, stability, patient compliance, and bioavailability. For the preparation of a super-saturated 1.5% REB solution, the pH-modification method using NaOH and a hydrophilic polymer was employed. Low-viscosity hydroxypropyl methylcellulose (HPMC 4.5cp) was selected and worked efficiently to suppress REB precipitation at 40 °C for 16 days. The additionally optimized eye drops formulation (F18 and F19) using aminocaproic acid and D-sorbitol as a buffering agent and an osmotic agent, respectively, demonstrated long-term physicochemical stability at 25 °C and 40 °C for 6 months. The hypotonicity (<230 mOsm) for F18 and F19 noticeably extended the stable period, since the pressure causing the REB precipitation was relieved compared to the isotonic. In the rat study, the optimized REB eye drops showed significantly long-lasting pharmacokinetic results, suggesting the possibility of reducing daily administration times and increasing patient compliance (0.50- and 0.83-times lower Cmax and 2.60- and 3.64-times higher exposure in the cornea and aqueous humor). In conclusion, the formulations suggested in the present study are promising candidates and offer enhanced solubility, stability, patient compliance, and bioavailability.

2.
ACS Appl Mater Interfaces ; 11(18): 16785-16794, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30999747

ABSTRACT

Solution-processed organic solar cells (OSCs) and hybrid perovskite solar cells (PvSCs) generally require appropriate transparent electrode with a low work function, which improves the electron extraction, increases the built-in potential, and suppresses charge recombinations. Hence, interfacial modifiers between the cathode and the photoactive layer play a significant role in OSCs and PvSCs, as they provide suitable energy-level alignment, leading to desirable charge carrier selectivity and suppressing charge carrier recombinations at the interfaces. Here, we present a comprehensive study of the energy-level mapping between a transparent electrode and photoactive layers to enhance the electron-transport ability by introducing amine-based interfacial modifiers (ABIMs). Among the ABIMs, polyethylenimine ethoxylated (PEIE) incorporating inverted OSCs shows enhanced power conversion efficiencies (PCEs) from 0.32 to 9.83% due to large interfacial dipole moments, leading to a well-aligned energy level between the cathode and the photoactive layer. Furthermore, we explore the versatility of the PEIE ABIM by employing different photoactive layers with fullerene derivatives, a nonfullerene acceptor, and a perovskite layer. Promisingly, inverted nonfullerene OSCs and planar n-i-p PvSCs with PEIE ABIM show outstanding PCEs of 11.88 and 17.15%, respectively.

3.
ACS Appl Mater Interfaces ; 11(2): 2189-2196, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30561179

ABSTRACT

Energy level alignment between a donor and an acceptor has a critical role in determining the open-circuit voltage ( VOC) in polymer solar cells (PSCs). Also, broad absorption of the photoactive layer is required to generate a high photocurrent. Herein, non-fullerene PSCs with D/A random copolymers and 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3- d:2',3'- d']- s-indaceno[1,2- b:5,6- b']dithiophene (ITIC) has been demonstrated. The D/A random copolymers are composed of a 2-ethylhexylthienyl-substituted benzo[1,2- b:4,5- b']dithiophene (BDT) donor unit (D) and a fluorinated thieno[3,4- b]thiophene (TT-F) acceptor unit (A). By controlling the D/A unit ratio in the polymer backbone, it is possible to modulate both the energy levels and absorption spectra of random copolymers. As the ratio of the donor unit in the polymer back bone increases, the highest occupied molecular orbital energy level is located deeper, leading to higher VOC. Also, the absorption spectra of random copolymers become blue-shifted with an increase of the donor unit ratio; it compensates the weak absorption region of ITIC. This complementary absorption enhances the photocurrent, leading to higher power conversion efficiency (PCE). Because of the optimization of the D/A ratio of random copolymers, a notable PCE of 10.27% can be achieved in PSCs with D5A and ITIC.

4.
J Nanosci Nanotechnol ; 18(10): 7221-7224, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29954563

ABSTRACT

A novel series of benzodithiophene-4,8-dione (BDD)-based copolymers, poly[(4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-s-indacenodithiophene-2,7-diyl)-alt-(1,3-bis(2-ethylhexyl)-5,7-di(thiophene2-yl)benzodithiophene-4,8-dione)] (P1) and poly[(5,5,11,11-tetrakis(4-hexylphenyl)dithieno[2,3-d: 2',3'-d']-s-indacenodithiophene-3,9-diyl)-alt-(1,3-bis(2-ethylhexyl)-5,7-di(thiophene-2-yl)benzodithiophene-4,8-dione)] (P2), which have the same acceptor moiety but different donor segments, have been designed and synthesized for use as donor materials in solution-processable polymer solar cells (PSCs). The optical and photovoltaic properties of the copolymers were investigated. The band gaps of the copolymers were in the range 1.91-1.92 eV. Under optimized conditions, the BDD-based polymers showed power conversion efficiencies (PCEs) for the PSCs in the range 2.52-2.92% under AM 1.5 illumination (100 mW/cm2). Among the copolymers, P1, which contained an indacenodithiophene donor unit, showed a power conversion efficiency of 2.92% with a short circuit current of 7.30 mA/cm2, open circuit voltage of 0.92 V, and a fill factor of 0.43, under AM 1.5 illumination (100 mW/cm2).

SELECTION OF CITATIONS
SEARCH DETAIL
...