Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 12(2)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36829827

ABSTRACT

The Castanopsis cuspidata var. sieboldii (CCS) plant grows predominantly in temperate regions of Asian countries, such as South Korea. Research on CCS has so far concentrated on the nutritional analysis, antioxidant activity, and anti-inflammation properties of its branches. However, the isolation of compounds and structural elucidation of effective single molecules remain unexplored, necessitating further exploration of CCS branches. Therefore, this study demonstrates the antioxidant and antimelanogenic activity of a single substance of ethyl gallate (EG) isolated from CCS branch extracts. Notably, the antimelanogenic (whitening) activity of EG extracted from CCS branches remains unexplored. Tyrosinase inhibition, kinetic enzyme assays, and molecular docking studies were conducted using mushroom tyrosinase in order to examine the antioxidant mechanism and antimelanin activity of EG in B16F10 melanoma cells. Nontoxic EG concentrations were found to be below 5 µg/mL. While EG significantly reduced the levels of whitening-associated proteins, p-CREB, and p-PKA, it dose-dependently inhibited the expression of TYR, TRP-1, TRP-2, and transcription factor (MITF). In addition, EG downregulated melanogenetic gene expression and activated autophagy signals. Therefore, EG extracted from CCS branches could serve as a novel functional cosmetic material with antimelanogenic and autophagy-enhancing activity.

2.
J Fungi (Basel) ; 8(3)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35330319

ABSTRACT

Sustainable substitutes for leather can be made from mushroom mycelium, which is an environmentally friendly alternative to animal and synthetic leather. Mycelium-based leather is derived from Polyporales, in which lignocellulosic material is used as the substrate. The plasticizing and crosslinking of mycelial mats with various reagents might affect the leather properties and mycelial architecture. This study investigated the physicochemical and mechanical properties of mycelium-based leather (MBL) samples, including the hygroscopic nature, thermal stability, cell wall chemistry, density, micromorphology, tensile strength, elongation rate, and Young's modulus. Micromorphological observations confirmed the mycelial networks and their binding performance, verifying their efficacy as a substitute leather. The most significant effects were observed after treatment with 20% polyethylene glycol, which resulted in an increase in Young's modulus and tensile strength. Furthermore, the samples generally exhibited a high density (1.35, 1.46 g/cm3) and tensile strength (7.21 ± 0.93, 8.49 ± 0.90 MPa), resembling leather. The tear strength reached as low as 0.5-0.8 N/mm. However, the tensile and tear strength may be affected by leather processing and the tuning of mycelial growth. Nevertheless, high-density mycelia are shown to be suitable for the production of MBL, while mycofabrication and strain selection are sustainable for novel industrial applications of MBL.

3.
Int J Mol Sci ; 22(8)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33923988

ABSTRACT

Quercetin is a well-known plant flavonol and antioxidant; however, there has been some debate regarding the efficacy and safety of native quercetin as a skin-whitening agent via tyrosinase inhibition. Several researchers have synthesized quercetin derivatives as low-toxicity antioxidants and whitening agents. However, no suitable quercetin derivatives have been reported to date. In this study, a novel quercetin derivative was synthesized by the SN2 reaction using quercetin and oleyl bromide. The relationship between the structures and activities of quercetin derivatives as anti-melanogenic agents was assessed using in vitro enzyme kinetics, molecular docking, and quenching studies; cell line experiments; and in vivo zebrafish model studies. Novel 3,7-dioleylquercetin (OQ) exhibited a low cytotoxic concentration level at >100 µg/mL (125 µM), which is five times less toxic than native quercetin. The inhibition mechanism showed that OQ is a competitive inhibitor, similar to native quercetin. Expression of tyrosinase, tyrosinase-related protein 1 (TRP-1) and tyrosinase-related protein 2 (TRP-2), and microphthalmia-associated transcription factor was inhibited in B16F10 melanoma cell lines. mRNA transcription levels of tyrosinase, TRP-1, and TRP-2 decreased in a dose-dependent manner. Melanin formation was confirmed in the zebrafish model using quercetin derivatives. Therefore, OQ might be a valuable asset for the development of novel skin-whitening agents.


Subject(s)
Antineoplastic Agents/pharmacology , Quercetin/chemistry , Animals , Cell Line, Tumor , Humans , Kinetics , Melanins/chemistry , Molecular Docking Simulation , RNA, Messenger/metabolism , Zebrafish
4.
J Food Biochem ; 44(7): e13282, 2020 07.
Article in English | MEDLINE | ID: mdl-32436270

ABSTRACT

Moringa oleifera is rich in nutrients, such as protein, vitamins, and phytochemicals, and has been used as a traditional remedy. In this study, extracts of M. oleifera leaves from South Korea and Cambodia were evaluated for their antioxidant and antiobesity activities and for food and natural medicine use. The extracts were made using water and ethanol with leaves from South Korea and Cambodia, and then, the ethanol extracts were further fractionated with ethyl acetate. The antioxidant and antiobesity activities of fractionated ethanol extracts were higher than those of water extracts. Although the expression of C/EBPα in 3T3-L1 cell differentiation did not have a concentration-dependent inhibitory effect on the M. oleifera leaf extracts, the expression of PPARγ, FAS, and ACC was inhibited in a concentration-dependent manner with the M. oleifera leaf extracts. This study shows that M. oleifera leaves from South Korea and Cambodia may be an effective candidate for antiobesity prevention. PRACTICAL APPLICATIONS: Antioxidants and antiobesity factors are important for metabolic syndrome including obesity. Recently, natural antiobesity medication containing polyphenol ingredients has been developed to replace synthetic antiobesity medication, which has various side effects. This study evaluates the antioxidant and antiobesity activities of Moringa oleifera leaves from different cultivation regions. The leaves grow rapidly and leaf extracts contain a large amount of nutrients and phytochemicals, which enables commercial production of the leaves as natural antiobesity medications including functional foods and nutraceuticals.


Subject(s)
Moringa oleifera , Antioxidants/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Polyphenols
SELECTION OF CITATIONS
SEARCH DETAIL
...