Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 31(13): 3708-3721, 2022 07.
Article in English | MEDLINE | ID: mdl-35569016

ABSTRACT

Natural hybrid zones provide opportunities for studies of the evolution of reproductive isolation in wild populations. Although recent investigations have found that the formation of neo-sex chromosomes is associated with reproductive isolation, the mechanisms remain unclear in most cases. Here, we assess the contemporary structure of gene flow in the contact zone between largely allopatric cytotypes of the dioecious plant Rumex hastatulus, a species with evidence of sex chromosome turn-over. Males to the west of the Mississippi river, USA, have an X and a single Y chromosome, whereas populations to the east of the river have undergone a chromosomal rearrangement giving rise to a larger X and two Y chromosomes. Using reduced-representation sequencing, we provide evidence that hybrids form readily and survive multiple backcross generations in the field, demonstrating the potential for ongoing gene flow between the cytotypes. Cline analysis of each chromosome separately captured no signals of difference in cline shape between chromosomes. However, principal component regression revealed a significant increase in the contribution of individual SNPs to inter-cytotype differentiation on the neo-X chromosome, but no correlation with recombination rate. Cline analysis revealed that the only SNPs with significantly steeper clines than the genome average were located on the neo-X. Our data are consistent with a role for neo-sex chromosomes in reproductive isolation between R. hastatulus cytotypes. Our investigation highlights the importance of studying plant hybrid zones for understanding the evolution of sex chromosomes.


Subject(s)
Rumex , Chromosomes, Plant/genetics , Evolution, Molecular , Genomics , Rumex/genetics , Sex Chromosomes , X Chromosome , Y Chromosome
2.
Gut Microbes ; 14(1): 2046452, 2022.
Article in English | MEDLINE | ID: mdl-35266847

ABSTRACT

The Lactobacillaceae are an intensively studied family of bacteria widely used in fermented food and probiotics, and many are native to the gut and vaginal microbiota of humans and other animals. Various studies have shown that specific Lactobacillaceae species produce metabolites that can inhibit the colonization of fungal and bacterial pathogens, but less is known about how Lactobacillaceae affect individual bacterial species in the endogenous animal microbiota. Here, we show that numerous Lactobacillaceae species inhibit the growth of the Lachnospiraceae family and the S24-7 group, two dominant clades of bacteria within the gut. We demonstrate that inhibitory activity is a property common to homofermentative Lactobacillaceae species, but not to species that use heterofermentative metabolism. We observe that homofermentative Lactobacillaceae species robustly acidify their environment, and that acidification alone is sufficient to inhibit growth of Lachnospiraceae and S24-7 growth, but not related species from the Clostridiales or Bacteroidales orders. This study represents one of the first in-depth explorations of the dynamic between Lactobacillaceae species and commensal intestinal bacteria, and contributes valuable insight toward deconvoluting their interactions within the gut microbial ecosystem.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Bacteria/genetics , Clostridiales , Female , Lactobacillaceae , Lactobacillus
3.
FEBS Lett ; 594(17): 2800-2818, 2020 09.
Article in English | MEDLINE | ID: mdl-32515490

ABSTRACT

Mutations in the nuclear matrix protein Matrin 3 (MATR3) have been identified in amyotrophic lateral sclerosis and myopathy. To investigate the mechanisms underlying MATR3 mutations in neuromuscular diseases and efficiently screen for modifiers of MATR3 toxicity, we generated transgenic MATR3 flies. Our findings indicate that expression of wild-type or mutant MATR3 in motor neurons reduces climbing ability and lifespan of flies, while their expression in indirect flight muscles (IFM) results in abnormal wing positioning and muscle degeneration. In both motor neurons and IFM, mutant MATR3 expression results in more severe phenotypes than wild-type MATR3, demonstrating that the disease-linked mutations confer pathogenicity. We conducted a targeted candidate screen for modifiers of the MATR3 abnormal wing phenotype and identified multiple enhancers involved in axonal transport. Knockdown of these genes enhanced protein levels and insolubility of mutant MATR3. These results suggest that accumulation of mutant MATR3 contributes to toxicity and implicate axonal transport dysfunction in disease pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Axonal Transport/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Motor Neurons/metabolism , Muscular Diseases/genetics , Nuclear Matrix-Associated Proteins/genetics , RNA-Binding Proteins/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Animals, Genetically Modified , Brain/metabolism , Brain/pathology , Disease Models, Animal , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Epistasis, Genetic , Flight, Animal/physiology , Gene Expression , Humans , Longevity/genetics , Motor Neurons/pathology , Muscles/metabolism , Muscles/pathology , Muscular Diseases/metabolism , Muscular Diseases/pathology , Nuclear Matrix-Associated Proteins/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/metabolism , Transgenes , Wings, Animal/metabolism , Wings, Animal/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...