Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 14(20): 4204-4212, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29756629

ABSTRACT

Recently developed electronic packaging materials based on low dimensional materials such as carbon nanotubes, graphene, and hexagonal boron nitride (h-BN) exhibit advantageous electrical, thermal, and mechanical properties for protecting electronic devices as well as dissipating heat flux from highly integrated circuits or high power electronic devices. Their thermal transport is mainly achieved by precise control of the nanostructure for nano-fillers to form the thermally conductive pathway. However, due to the viscoelastic behaviors of host polymeric materials, their phase or structural stability is significantly reduced by enhanced molecular motion at high temperature, resulting in poor thermal transport and mechanical strength. Here, we introduce flexible and robust h-BN foam sheets with a three-dimensional network structure, which exhibit much enhanced thermostability at high temperature. Furthermore, the additional infiltration of Fe3O4 nanoparticles into those structures results in relatively high electromagnetic absorbing performance. The combination of thermostability and mechanical strength based on the h-BN foam sheets provides novel opportunities for multifunctional thermally conductive materials in coatings and films without severely compromising auxiliary characteristics such as mechanical strength and thermal stability.

2.
Macromol Rapid Commun ; 37(18): 1507-12, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27445127

ABSTRACT

A thermally stable 2D array of spheres and their morphology control become important for the fabrication of novel nanostructures. Here, a simple method is presented for fabrication of large-area and well-ordered arrays of carbonized polystyrene (PS) hollow spheres with a controlled (close-packed or non-close-packed hexagonal) morphology, prepared by combining the self-assembly of PS-grafted silica nanoparticles, etching, electron irradiation, and subsequent thermal annealing. Fine control in the 2D or 3D nanostructure of carbon materials can open up new opportunities for high-performance nanoscale applications that require an efficient fabrication method for preparation of the porous carbon array.


Subject(s)
Carbon/chemistry , Electrons , Nanospheres/chemistry , Polymers/chemistry , Particle Size , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...