Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Adv Mater ; : e2402287, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696529

ABSTRACT

Biological olfaction relies on a large number of receptors that function as sensors to detect gaseous molecules. It is challenging to realize artificial olfactory systems that contain similarly large numbers of sensory materials. It is shown that combinatorial materials processing with vapor deposition can be used to fabricate large arrays of distinct chemiresistive sensing materials. By combining these with light-emitting diodes, an array of chemiresistively-modulated light-emitting diodes, or ChemLEDs, that permit a simultaneous optical read-out in response to an analyte is obtained. The optical nose uses a common voltage source and ground for all sensing elements and thus eliminates the need for complex wiring of individual sensors. This optical nose contains one hundred ChemLEDs and generates unique light patterns in response to gases and their mixtures. Optical pattern recognition methods enable the quantitative prediction of the corresponding concentrations and compositions, thereby paving the way for massively parallel artificial olfactory systems. ChemLEDs open the possibility to explore demanding gas sensing applications, including in environmental, food quality monitoring, and potentially diagnostic settings.

2.
Small ; 20(19): e2309217, 2024 May.
Article in English | MEDLINE | ID: mdl-38133489

ABSTRACT

Many existing synthetic hydrogels are inappropriate for repetitive motions because of large hysteresis, and their mechanical properties in warm and saline physiological conditions remain understudied. In this study, a stretch-rate-independent, hysteresis-free, elastic, and tough nanocomposite hydrogel that can maintain its mechanical properties in phosphate-buffered saline of 37 °C similar to warm and saline conditions of the human body is developed. The strength, stiffness, and toughness of the hydrogel are simultaneously reinforced by biomimetic silica nanoparticles with a surface of embedded circular polyamine chains. Such distinctive surfaces form robust interfacial interactions by local topological folding/entanglement with the polymer chains of the matrix. Load transfer from the soft polymer matrix to stiff nanoparticles, along with the elastic sliding/unfolding/disentanglement of polymer chains, overcomes the traditional trade-off between strength/stiffness and toughness and allows for hysteresis-free, strain-rate-independent, and elastic behavior. This robust reinforcement is sustained in warm phosphate-buffered saline. These properties demonstrate the application potential of the developed hydrogel as a soft, elastic, and tough bio-strain sensor that can detect dynamic motions across various deformation speeds and ranges. The findings provide a simple yet effective approach to developing practical hydrogels with a desirable combination of strength/stiffness and toughness, in a fully swollen and equilibrated state.

3.
Korean J Radiol ; 24(12): 1179-1189, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38016678

ABSTRACT

OBJECTIVE: We aimed to evaluate the reporting quality of research articles that applied deep learning to medical imaging. Using the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) guidelines and a journal with prominence in Asia as a sample, we intended to provide an insight into reporting quality in the Asian region and establish a journal-specific audit. MATERIALS AND METHODS: A total of 38 articles published in the Korean Journal of Radiology between June 2018 and January 2023 were analyzed. The analysis included calculating the percentage of studies that adhered to each CLAIM item and identifying items that were met by ≤ 50% of the studies. The article review was initially conducted independently by two reviewers, and the consensus results were used for the final analysis. We also compared adherence rates to CLAIM before and after December 2020. RESULTS: Of the 42 items in the CLAIM guidelines, 12 items (29%) were satisfied by ≤ 50% of the included articles. None of the studies reported handling missing data (item #13). Only one study respectively presented the use of de-identification methods (#12), intended sample size (#19), robustness or sensitivity analysis (#30), and full study protocol (#41). Of the studies, 35% reported the selection of data subsets (#10), 40% reported registration information (#40), and 50% measured inter and intrarater variability (#18). No significant changes were observed in the rates of adherence to these 12 items before and after December 2020. CONCLUSION: The reporting quality of artificial intelligence studies according to CLAIM guidelines, in our study sample, showed room for improvement. We recommend that the authors and reviewers have a solid understanding of the relevant reporting guidelines and ensure that the essential elements are adequately reported when writing and reviewing the manuscripts for publication.


Subject(s)
Checklist , Radiology , Humans , Artificial Intelligence , Asia , Diagnostic Imaging
4.
Nano Lett ; 23(10): 4516-4523, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37184356

ABSTRACT

We report a method to precisely control the atomic defects at grain boundaries (GBs) of monolayer MoS2 by vapor-liquid-solid (VLS) growth using sodium molybdate liquid alloys, which serve as growth catalysts to guide the formations of the thermodynamically most stable GB structure. The Mo-rich chemical environment of the alloys results in Mo-polar 5|7 defects with a yield exceeding 95%. The photoluminescence (PL) intensity of VLS-grown polycrystalline MoS2 films markedly exceeds that of the films, exhibiting abundant S 5|7 defects, which are kinetically driven by vapor-solid-solid growths. Density functional theory calculations indicate that the enhanced PL intensity is due to the suppression of nonradiative recombination of charged excitons with donor-type defects of adsorbed Na elements on S 5|7 defects. Catalytic liquid alloys can aid in determining a type of atomic defect even in various polycrystalline 2D films, which accordingly provides a technical clue to engineer their properties.

5.
Physiother Theory Pract ; : 1-7, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36752656

ABSTRACT

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) infection may decrease respiratory and physical functions. OBJECTIVE: To evaluate whether robot-assisted stair climbing training (RASCT) would improve pulmonary and physical functions in a patient post-severe COVID-19 infection. CASE DESCRIPTION: A 48-year-old woman who had experienced severe COVID-19 underwent a 6-week inpatient rehabilitation. She persistently exhibited impaired pulmonary and physical functions, including walking and balance impairment. We provided a 30-min outpatient RASCT biweekly for 6 weeks. OUTCOMES: After training, maximal inspiratory and maximal expiratory pressures improved from 81 and 74 cmH2O to 104 and 81 cmH2O, respectively. The walking speed improved from 1.15 to 1.21 m/s. In balance ability, physical performance battery score and timed up-and-go test improved from 8 to 11 s and 10.89 to 9.95 s, respectively. Regarding exercise capacity, the 6-min walk test distance improved from 453 to 482 m, and the number of 1-min sit-to-stand test improved from 20 to 23, with improved pulse rate and saturation level. The physical and psychological domain scores of the World Health Organization Quality-of-Life Scale-BREF improved from 44 to 63 and 69 to 81, respectively; Falls Efficacy Scale-International scores improved from 38 to 21. CONCLUSION: RASCT, as part of a rehabilitation plan, was feasible and effective for this patient after severe COVID-19 infection.

6.
ACS Omega ; 8(6): 5885-5892, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36816670

ABSTRACT

A new graphene quantum dot (GQD) fabrication method is presented, which employs a lithographic approach based on self-assembled Au nanoparticles formed by solid-state dewetting. The GQDs are formed by the patterned etching of a graphene layer enabled by Au nanoparticles, and their size is controllable through that of the Au nanoparticles. GQDs are fabricated with four different diameters: 12, 14, 16, and 27 nm. The geometrical features and lattice structures of the GQDs are determined using transmission electron microscopy (TEM). Hexagonal lattice fringes in the TEM image and G- and 2D-band Raman scattering evidence the graphitic characteristics of the GQDs. The oxygen content can be controlled by thermal reduction under a hydrogen atmosphere. In GQDs, the absorption peak wavelengths in the ultraviolet range tend to decrease as the size of the GQDs decreases. They also exhibit apparent photoluminescence (PL). The PL peak wavelength is approximately 600 nm and becomes shorter as the size of the GQDs decreases. The blue shift in the optical absorption and PL of the smaller GQDs is attributed to the quantum confinement effect. The proposed GQD fabrication method can provide a way to control the physical and chemical properties of GQDs via their size and oxygen content.

7.
J Clin Endocrinol Metab ; 107(2): 563-574, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34614160

ABSTRACT

CONTEXT: Pituitary stalk thickening (PST) is often identified on magnetic resonance imaging (MRI), either incidentally or during diagnostic workup of hypopituitarism. However, the neoplastic etiology and natural course of PST are not fully understood, although this knowledge is required to establish diagnostic and surveillance strategies. OBJECTIVE: This work aimed to investigate the neoplastic etiology and natural course of PST. METHODS: MEDLINE/PubMed and EMBASE databases were searched up to February 2021 to identify original research investigating the etiologies of PST. The proportion of neoplastic etiology in patients with PST was meta-analytically pooled. Supplementary analysis exploring factors suggesting neoplasm was also performed. For initially indeterminate cases without confirmed diagnosis, the proportion of patients showing progression of PST during follow-up was evaluated. RESULTS: Eighteen studies covering 1368 patients with PST were included. The pooled proportion of neoplasm was 45.2% (95% CI, 33.3%-57.8%), with substantial heterogeneity across studies (I2 = 93%). The most common neoplasm was germ cell tumor (14.0% of study population), followed by Langerhans cell histiocytosis (10.2%) and metastasis (4.7%). The studies on pediatric populations and those with more than 50% of patients having at least one pituitary hormone deficiency tended to show a higher proportion of neoplasm. The pituitary stalk was thicker in neoplasms, but the difference was not significant (pooled mean difference, 2.08 mm; P = .08). In initially indeterminate cases, 18.5% (95% CI, 7.6%-38.3%) showed progression of PST during follow-up. CONCLUSION: PST was commonly confirmed to be neoplastic, especially in pediatric populations. As isolated PST frequently progresses, follow-up imaging is essential in initially indeterminate cases.


Subject(s)
Hypopituitarism/diagnosis , Pituitary Gland/pathology , Pituitary Neoplasms/diagnosis , Diagnosis, Differential , Disease Progression , Follow-Up Studies , Humans , Incidental Findings , Magnetic Resonance Imaging , Organ Size , Pituitary Gland/diagnostic imaging , Pituitary Neoplasms/epidemiology , Pituitary Neoplasms/pathology
8.
Chemosphere ; 291(Pt 3): 133013, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34813849

ABSTRACT

Solar-energy-driven water purification is a promising technology for obtaining clean water during the current global climate crisis. Solar absorbers with high light absorption capacity and efficient energy conversion are critical components of solar-driven water evaporation and purification systems. Herein, we demonstrate that porous reduced graphene oxide (rGO)-based composite spheres facilitate efficient water evaporation and effective organic pollutant adsorption from water. Most solar light (>99% for 1 mm thick composites) is absorbed by the porous rGO-based composite spheres floating on water and is subsequently converted into heat, which is efficiently transferred to water at the air-water interface. Evaporation efficiency via energy conversion by the floating sphere composites reaches ∼74%. The increase in surface temperature of water also contributes to improving the adsorption capacity of the rGO-based composite spheres for organic pollutants. Furthermore, the composites can effectively block ultraviolet radiation, preventing the chemical reaction of water pollutants into harmful components.


Subject(s)
Graphite , Adsorption , Porosity , Sunlight , Ultraviolet Rays
9.
J Am Chem Soc ; 143(3): 1399-1408, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33332964

ABSTRACT

Developing efficient and inexpensive electrocatalysts for the hydrogen evolution reaction (HER) in alkaline water electrolysis plays a key role for renewable hydrogen energy technology. The slow reaction kinetics of HER in alkaline solutions, however, has hampered advances in high-performance hydrogen production. Herein, we investigated the trends in HER activity with respect to the binding energies of Ni-based thin film catalysts by incorporating a series of oxophilic transition metal atoms. It was found that the doping of oxophilic atoms enables the modulation of binding abilities of hydrogen and hydroxyl ions on the Ni surfaces, leading to the first establishment of a volcano relation between OH-binding energies and alkaline HER activities. In particular, Cr-incorporated Ni catalyst shows optimized OH-binding as well as H-binding energies for facilitating water dissociation and improving HER activity in alkaline media. Further enhancement of catalytic performance was achieved by introducing an array of three-dimensional (3D) Ni nanohelixes (NHs) that provide abundant surface active sites and effective channels for charge transfer and mass transport. The Cr dopants incorporated into the Ni NHs accelerate the dissociative adsorption process of water, resulting in remarkably enhanced catalytic activities in alkaline medium. Our approach can provide a rational design strategy and experimental methodology toward efficient bimetallic electrocatalysts for alkaline HER using earth-abundant elements.

10.
Lab Chip ; 21(3): 513-520, 2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33347528

ABSTRACT

Mixing in microscale flows, where turbulence is inherently difficult to generate, has been a challenging issue owing to its laminar flow characteristics. Either the diffusion-based mixing process, or the convective mixing based on the cross-stream secondary flow, has been exploited as a passive mixing scheme that does not require any external force field. However, these techniques suffer from insufficient mixing or complicated channel design step. In this study, we propose an efficient mixing scheme by combining inertio-elastic flow instability in a viscoelastic dilute polymer solution and a modified serpentine channel, termed a gear-shape channel, which has side wells along the serpentine channel. We achieved highly efficient mixing in the gear-shaped channel for a significantly wider range of flow rates than in a conventional serpentine channel. Further, we applied our novel mixing scheme to the continuous synthesis of silica nanoparticles, which demonstrated the synthesis of nanoparticles with more uniform size distribution and regular shape, than those in a Newtonian fluid. In addition, the adsorption of inorganic materials on the channel walls was significantly suppressed by the flow instability of the viscoelastic dilute polymer solution in the gear-shaped channel.

11.
Eur Radiol ; 31(6): 4114-4129, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33241519

ABSTRACT

OBJECTIVES: To compare the incidence of treatment-related necrosis between combination SRS+ICI therapy and SRS therapy alone in patients with brain metastases from melanoma and non-small cell lung cancer (NSCLC). METHODS: A systematic literature search of Ovid-MEDLINE and EMBASE was performed up to August 10, 2020. The difference in the pooled incidence of treatment-related necrosis after SRS+ICI or SRS alone was evaluated. The cumulative incidence of treatment-related necrosis at the specific time point after the treatment was calculated and plotted. Subgroup and meta-regression analyses were additionally performed. RESULTS: Sixteen studies (14 on melanoma, 2 on NSCLC) were included. In NSCLC brain metastasis, the reported incidences of treatment-related necrosis in SRS+ICI and SRS alone ranged 2.9-3.4% and 0-2.9%, respectively. Meta-analysis was conducted including 14 studies on melanoma brain metastasis. The incidence of treatment-related necrosis was higher in SRS+ICI than SRS alone (16.0% vs. 6.5%; p = 0.065; OR, 2.35). The incidence showed rapid increase until 12 months after the SRS when combined with ICI therapy (14%; 95% CI, 8-22%) and its pace of increase slowed thereafter. Histopathologic diagnosis as the reference standard for treatment-related necrosis and inclusion of only symptomatic cases were the source of heterogeneity in SRS+ICI. CONCLUSIONS: Treatment-related necrosis tended to occur 2.4 times more frequently in the setting of combination SRS+ICI therapy compared with SRS alone in melanoma brain metastasis showing high cumulative incidence within the first year. Treatment-related necrosis should be considered when SRS+ICI combination therapy is used for melanoma brain metastasis, especially in the first year. KEY POINTS: • Treatment-related necrosis occurred 2.4 times more frequently in the setting of combination SRS+ICI therapy compared with SRS alone in melanoma brain metastasis. • Treatment-related necrosis more frequently occurred in brain metastases from melanoma than NSCLC. • Reference standard for treatment-related necrosis and inclusion of only symptomatic treatment-related necrosis were a significant source of heterogeneity, indicating varying definitions of treatment-related necrosis in the literature need to be unified.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiosurgery , Brain Neoplasms/surgery , Humans , Immune Checkpoint Inhibitors , Incidence , Necrosis , Radiosurgery/adverse effects , Retrospective Studies
12.
Korean J Radiol ; 22(4): 584-595, 2021 04.
Article in English | MEDLINE | ID: mdl-33289357

ABSTRACT

OBJECTIVE: Immune checkpoint inhibitor (ICI) therapy has shown activity against melanoma brain metastases. Recently, promising results have also been reported for ICI combination therapy and ICI combined with radiotherapy. We aimed to evaluate radiologic response and adverse event rates of these therapeutic options by a systematic review and meta-analysis. MATERIALS AND METHODS: A systematic literature search of Ovid-MEDLINE and EMBASE was performed up to October 12, 2019 and included studies evaluating the intracranial objective response rates (ORRs) and/or disease control rates (DCRs) of ICI with or without radiotherapy for treating melanoma brain metastases. We also evaluated safety-associated outcomes. RESULTS: Eleven studies with 14 cohorts (3 with ICI combination therapy; 5 with ICI combined with radiotherapy; 6 with ICI monotherapy) were included. ICI combination therapy {pooled ORR, 53% (95% confidence interval [CI], 44-61%); DCR, 57% (95% CI, 49-66%)} and ICI combined with radiotherapy (pooled ORR, 42% [95% CI, 31-54%]; DCR, 85% [95% CI, 63-95%]) showed higher local efficacy compared to ICI monotherapy (pooled ORR, 15% [95% CI, 11-20%]; DCR, 26% [95% CI, 21-32%]). The grade 3 or 4 adverse event rate was significantly higher with ICI combination therapy (60%; 95% CI, 52-67%) compared to ICI monotherapy (11%; 95% CI, 8-17%) and ICI combined with radiotherapy (4%; 95% CI, 1-19%). Grade 3 or 4 central nervous system (CNS)-related adverse event rates were not different (9% in ICI combination therapy; 8% in ICI combined with radiotherapy; 5% in ICI monotherapy). CONCLUSION: ICI combination therapy or ICI combined with radiotherapy showed better local efficacy than ICI monotherapy for treating melanoma brain metastasis. The grade 3 or 4 adverse event rate was highest with ICI combination therapy, and the CNS-related grade 3 or 4 event rate was similar. Prospective trials will be necessary to compare the efficacy of ICI combination therapy and ICI combined with radiotherapy.


Subject(s)
Brain Neoplasms/radiotherapy , Melanoma/drug therapy , Melanoma/radiotherapy , Brain Neoplasms/secondary , Central Nervous System Diseases/etiology , Combined Modality Therapy/adverse effects , Humans , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Ipilimumab/adverse effects , Ipilimumab/therapeutic use , Melanoma/pathology , Treatment Outcome
13.
Diagnostics (Basel) ; 10(12)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339421

ABSTRACT

This study aimed to evaluate the radiologic response and adverse event rates of immune checkpoint inhibitor (ICI) therapy with or without radiotherapy for the treatment of non-small cell lung cancer (NSCLC) brain metastases. A systematic literature search was performed up to January 3, 2020. Studies evaluating the intracranial objective response rates (ORR) and/or disease control rates (DCR) of ICI with or without radiotherapy for treating NSCLC brain metastases were included. Consequently, twelve studies satisfied inclusion criteria. ICI combined with radiotherapy (pooled ORR, 95%; DCR, 97%) showed better local efficacy compared to ICI monotherapy (pooled ORR, 24%; DCR, 44%; p < 0.01 for both ORR and DCR). Grade 3 or 4 central nervous system (CNS)-related adverse event rates were not different (5% vs. 4%; p = 0.93). In conclusion, ICI combined with radiotherapy showed better intracranial efficacy than ICI monotherapy for treating NSCLC brain metastases. CNS-related grade 3 or 4 adverse event rate was not statistically different between the two groups. Several prospective trials are needed to compare the efficacy of ICI combined with radiotherapy and ICI monotherapy.

14.
ACS Appl Mater Interfaces ; 12(41): 46288-46295, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32959644

ABSTRACT

We present resistive switching (RS) behavior of few-layer hexagonal boron nitride (h-BN) mediated by defects and interfacial charge transfer. Few-layer h-BN is grown by metal-organic chemical vapor deposition and used as active RS medium in Ti/h-BN/Au structure, exhibiting clear bipolar RS behavior and fast switching characteristics about ∼25 ns without an initial electroforming process. Systematic investigation on microstructural and chemical characteristics of the h-BN reveals that there are structural defects such as homoelemental B-B bonds at grain boundaries and nitrogen vacancies, which can provide preferential pathways for the penetration of Tix+ ions through the h-BN film. In addition, the interfacial charge transfer from Ti to the h-BN is observed by in situ X-ray photoelectron spectroscopy. We suggest that the attractive Coulomb interaction between positively charged Tix+ ions and the negatively charged h-BN surface as a result of the interfacial charge transfer facilitates the migration of Tix+ ions at the Ti/h-BN interface, leading to the facile formation of conductive filaments. We believe that these findings can improve our understanding of the fundamental mechanisms involved in RS behavior of h-BN and contribute a significant step for the future development of h-BN-based nonvolatile memory applications.

15.
Brain Neurorehabil ; 13(1): e6, 2020 Mar.
Article in English | MEDLINE | ID: mdl-36744272

ABSTRACT

Robots are being used to assist the recovery of walking ability for patients with neurologic disorders. This study aimed to evaluate the feasibility and functional improvement of training with robot-assisted gait training (RAGT) using the Morning Walk®, an end-effector type robot using footplates and saddle seat support. A total of 189 individuals (65.1% men, 34.9% women; mean age, 53.2 years; age range: 5-87 years) with brain lesions, spinal cord injuries, Parkinson's disease, peripheral neuropathies, and pediatric patients were involved in this retrospectively registered clinical trial. Each participant performed 30 minutes of RAGT, five times a week, for a total of 24 sessions. Failure was defined as an inability to complete all 24 sessions, and the reasons for discontinuation were analyzed. Parameters of Medical Research Council scales and Functional Ambulation Categories were analyzed before and after RAGT training. Among the 189 patients, 22 (11.6%) failed to complete the RAGT. The reasons included decreased cooperation, musculoskeletal pain, saddle seat discomfort, excessive body-weight support, joint spasticity or restricted joint motion, urinary incontinence from an indwelling urinary catheter, and fatigue. Comparison between the pre- and post-training motor and ambulatory functions showed significant improvement. The result of the study indicates that the Morning Walk® is feasible and safe and useful for functional improvement in patients with various neurologic disorders. Trial Registration: Clinical Research Information Service Identifier: KCT0003627.

16.
Int J Pharm ; 573: 118778, 2020 Jan 05.
Article in English | MEDLINE | ID: mdl-31678394

ABSTRACT

Microneedle systems are a rapidly growing and promising technology for delivery of drugs, such as vaccines, small molecules, or biologics and for aesthetic skin treatment in local clinics; however, they remain relatively new from a regulatory perspective. There are strong demands for established procedures, test requirements for approval, and recent trends that industries/researchers related to microneedle systems can refer to. Some microneedle systems are commercially available, many are currently undergoing clinical trials, and some are pending approval for commercialization. This review focuses on microneedle systems that are either on the market or in clinical trials, their applicability and characteristics, and the critical evaluation and test methods necessary for their development and approval.


Subject(s)
Drug Delivery Systems , Needles , Humans , Microinjections , Skin/metabolism , Vaccines/administration & dosage
17.
ACS Omega ; 4(15): 16462-16470, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31616824

ABSTRACT

It has been a challenge to achieve deoxyribonucleic acid (DNA) metallization and mass production with a high quality. The main aim of this study was to develop a large-scale production method of metal-ion-coated DNA hybrid fibers, which can be useful for the development of physical devices and sensors. Cetyltrimethylammonium-chloride-modified DNA molecules (CDNA) coated with metal ions through self-metallization exhibit enhanced optical and magnetic properties and thermal stability. In this paper, we present a simple synthesis route for Cu2+-coated CDNA hybrid fibers through ion exchange followed by self-metallization and analyze their structural and chemical composition (by X-ray diffraction (XRD), high-resolution field emission transmission electron microscopy (FETEM), and energy-dispersive X-ray spectroscopy (EDS)) and optical (by ultraviolet (UV)-visible absorption, Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopies (XPS)), magnetic (by vibrating-sample magnetometry), and thermal (by a thermogravimetric analysis) characteristics. The XRD patterns, high-resolution FETEM images, and selected-area electron diffraction patterns confirmed the triclinic structure of Cu2+ in CDNA. The EDS results revealed the formation of Cu2+-coated CDNA fibers with a homogeneous distribution of Cu2+. The UV-vis, FTIR, and XPS spectra showed the electronic transition, interaction, and energy transfer between CDNA and Cu2+, respectively. The Cu2+-coated CDNA fibers exhibited a ferromagnetic nature owing to the presence of Cu2+. The magnetization of the Cu2+-coated CDNA fibers increased with the concentration of Cu2+ and decreased with the increase in temperature. Endothermic (absorbed heat) and exothermic (released heat) peaks in the differential thermal analysis curve were observed owing to the interaction of Cu2+ with the phosphate backbone.

18.
Opt Express ; 27(14): 19692-19701, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31503725

ABSTRACT

Two-dimensional (2-D) hexagonal boron nitride (h-BN) has attracted considerable attention for deep ultraviolet optoelectronics and visible single photon sources, however, realization of an electrically-driven light emitter remains challenging due to its wide bandgap nature. Here, we report electrically-driven visible light emission with a red-shift under increasing electric field from a few layer h-BN by employing a five-period Al2O3/h-BN multiple heterostructure and a graphene top electrode. Investigation of electrical properties reveals that the Al2O3 layers act as potential barriers confining injected carriers within the h-BN wells, while suppressing the electrostatic breakdown by trap-assisted tunneling, to increase the probability of radiative recombination. The result highlights a promising potential of such multiple heterostructure as a practical and efficient platform for electrically-driven light emitters based on wide bandgap two-dimensional materials.

19.
Sci Rep ; 9(1): 10590, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31332250

ABSTRACT

Remarkable improvements in both structural and optical properties of wafer-scale hexagonal boron nitride (h-BN) films grown by metal-organic chemical vapor deposition (MOCVD) enabled by high-temperature post-growth annealing is presented. The enhanced crystallinity and homogeneity of the MOCVD-grown h-BN films grown at 1050 °C is attributed to the solid-state atomic rearrangement during the thermal annealing at 1600 °C. In addition, the appearance of the photoluminescence by excitonic transitions as well as enlarged optical band gap were observed for the post-annealed h-BN films as direct consequences of the microstructural improvement. The post-growth annealing is a very promising strategy to overcome limited crystallinity of h-BN films grown by typical MOCVD systems while maintaining their advantage of multiple wafer scalability for practical applications towards two-dimensional electronics and optoelectronics.

20.
Sci Rep ; 9(1): 5736, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30952939

ABSTRACT

We demonstrate wafer-scale growth of high-quality hexagonal boron nitride (h-BN) film on Ni(111) template using metal-organic chemical vapor deposition (MOCVD). Compared with inert sapphire substrate, the catalytic Ni(111) template facilitates a fast growth of high-quality h-BN film at the relatively low temperature of 1000 °C. Wafer-scale growth of a high-quality h-BN film with Raman E2g peak full width at half maximum (FWHM) of 18~24 cm-1 is achieved, which is to the extent of our knowledge the best reported for MOCVD. Systematic investigation of the microstructural and chemical characteristics of the MOCVD-grown h-BN films reveals a substantial difference in catalytic capability between the Ni(111) and sapphire surfaces that enables the selective-area growth of h-BN at pre-defined locations over a whole 2-inch wafer. These achievement and findings have advanced our understanding of the growth mechanism of h-BN by MOCVD and will contribute an important step toward scalable and controllable production of high-quality h-BN films for practical integrated two-dimensional materials-based systems and devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...