Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38790734

ABSTRACT

Microplastics (MPs) are ubiquitous in the environment, posing a threat to ecosystems and causing increasing concerns regarding their impacts on the human body through exposure. However, there has been limited research on the presence of MPs in functional foods, despite them being consumed for health improvement. This study aimed to investigate MP occurrence in various omega-3 oils and oil products in the Korean market and its relation to the source of raw material or manufacture. MPs were investigated in omega-3 capsules and raw oil, sourced from both plant-based (PB) and animal-based (AB) sources. We developed a method of direct filtration with acetone washing for collecting and characterizing MPs larger than 5 µm using micro-Raman spectroscopy. The average number of MPs by mass was found to be 1.2 ± 1.7 MPs/g for PB raw oil, 2.2 ± 1.7 MPs/g for AB raw oil, 3.5 ± 3.9 MPs/g for PB capsule oil, and 10.6 ± 8.9 MPs/g for AB capsule oil. Polypropylene and polyethylene terephthalate were the major MP species (83-95%) found in omega-3 oil. The proportions based on size range remained consistent across all groups, with a trend of being detected at higher rates as the size decreased. The results reveal that the main reason for the MP contamination of omega-3 oil is not the source of raw material but the manufacturing and packaging process.

2.
Sci Rep ; 13(1): 13016, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563179

ABSTRACT

Microplastics (< 5 mm) have been found in marine ecosystems worldwide, even in Antarctic ecosystems. In this study, the stomach and upper intestines of 14 dead gentoo penguin (Pygoscelis papua) chicks were collected and screened for microplastics on King George Island, a gateway to Antarctic research and tourism. A total of 378 microplastics were identified by Fourier-transform infrared spectroscopy, with 27.0 ± 25.3 microplastics per individual. The detected number of microplastics did not increase with the mass of penguin chicks, suggesting no permanent accumulation of microplastics. However, the concentration of microplastics was much higher (9.1 ± 10.8 microplastics per individual within the size range 100-5000 µm) than the previously reported concentration in the penguin feces, and a greater number of smaller microplastics were found. Marine debris surveys near the breeding colony found various plastic (79.3%) to be the most frequent type of beached debris, suggesting that local sources of marine plastic waste could have contributed to microplastic contamination of penguin chicks being fed by parents that forage in nearby seas. This finding confirms the presence of microplastics in an Antarctic ecosystem and suggests the need for stronger waste management in Antarctica and a standardized scheme of microplastic monitoring in this once-pristine ecosystem.


Subject(s)
Spheniscidae , Animals , Microplastics , Plastics , Ecosystem , Antarctic Regions , Chickens , Gastrointestinal Tract , Environmental Monitoring
3.
Environ Pollut ; 322: 121153, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36709032

ABSTRACT

Evidence of microplastics in humans has recently been demonstrated. The primary route of human exposure to microplastics is consumption of contaminated food and water. However, quantitative estimations of exposure to microplastics are limited, which hinders human health risk assessments. In this study, abundances of microplastics were measured in eight food types, comprising 90 products of table salts, soy sauces, fish sauces, salted seafood, seaweed, honey, beer, and beverage. Aggregate human exposure to microplastics via food consumption was assessed based on the number and mass of microplastics, using deterministic calculations and Monte Carlo simulations. The determinations revealed that average adult Koreans likely ingest 1.4 × 10-4 and 3.1 × 10-4 g of microplastics per week, respectively. These results are orders of magnitude smaller than earlier estimates of 0.1-5 g of microplastics per week that likely chose experimental outliers. Therefore, careful selection of literature data and estimation methods is needed to provide more realistic exposure estimations from microplastic counts. This study extends our understanding of MP occurrence in food and provides a more thorough estimate of aggregate microplastic exposure via food consumption.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Humans , Plastics , Water Pollutants, Chemical/analysis , Environmental Monitoring , Seafood/analysis , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL
...