Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 4(6)2019 03 21.
Article in English | MEDLINE | ID: mdl-30730308

ABSTRACT

Myotonic dystrophy (DM) is the most common autosomal dominant muscular dystrophy and encompasses both skeletal muscle and cardiac complications. DM is nucleotide repeat expansion disorder in which type 1 (DM1) is due to a trinucleotide repeat expansion on chromosome 19 and type 2 (DM2) arises from a tetranucleotide repeat expansion on chromosome 3. Developing representative models of DM in animals has been challenging due to instability of nucleotide repeat expansions, especially for DM2, which is characterized by nucleotide repeat expansions often greater than 5,000 copies. To investigate mechanisms of human DM, we generated cellular models of DM1 and DM2. We used regulated MyoD expression to reprogram urine-derived cells into myotubes. In this myogenic cell model, we found impaired dystrophin expression, in the presence of muscleblind-like 1 (MBNL1) foci, and aberrant splicing in DM1 but not in DM2 cells. We generated induced pluripotent stem cells (iPSC) from healthy controls and DM1 and DM2 subjects, and we differentiated these into cardiomyocytes. DM1 and DM2 cells displayed an increase in RNA foci concomitant with cellular differentiation. iPSC-derived cardiomyocytes from DM1 but not DM2 had aberrant splicing of known target genes and MBNL sequestration. High-resolution imaging revealed tight association between MBNL clusters and RNA foci in DM1. Ca2+ transients differed between DM1- and DM2 iPSC-derived cardiomyocytes, and each differed from healthy control cells. RNA-sequencing from DM1- and DM2 iPSC-derived cardiomyocytes revealed distinct misregulation of gene expression, as well as differential aberrant splicing patterns. Together, these data support that DM1 and DM2, despite some shared clinical and molecular features, have distinct pathological signatures.


Subject(s)
Genetic Predisposition to Disease/genetics , MyoD Protein/metabolism , Myotonic Dystrophy/genetics , Myotonic Dystrophy/pathology , Calcium/metabolism , Cell Line , Dystrophin/metabolism , Gene Expression , Genetic Variation , Humans , Induced Pluripotent Stem Cells/metabolism , Muscle Development , Muscle Fibers, Skeletal/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myotonic Dystrophy/classification , Myotonic Dystrophy/urine , RNA Splicing , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
2.
JCI Insight ; 3(9)2018 05 03.
Article in English | MEDLINE | ID: mdl-29720576

ABSTRACT

Exon skipping uses chemically modified antisense oligonucleotides to modulate RNA splicing. Therapeutically, exon skipping can bypass mutations and restore reading frame disruption by generating internally truncated, functional proteins to rescue the loss of native gene expression. Limb-girdle muscular dystrophy type 2C is caused by autosomal recessive mutations in the SGCG gene, which encodes the dystrophin-associated protein γ-sarcoglycan. The most common SGCG mutations disrupt the transcript reading frame abrogating γ-sarcoglycan protein expression. In order to treat most SGCG gene mutations, it is necessary to skip 4 exons in order to restore the SGCG transcript reading frame, creating an internally truncated protein referred to as Mini-Gamma. Using direct reprogramming of human cells with MyoD, myogenic cells were tested with 2 antisense oligonucleotide chemistries, 2'-O-methyl phosphorothioate oligonucleotides and vivo-phosphorodiamidate morpholino oligomers, to induce exon skipping. Treatment with vivo-phosphorodiamidate morpholino oligomers demonstrated efficient skipping of the targeted exons and corrected the mutant reading frame, resulting in the expression of a functional Mini-Gamma protein. Antisense-induced exon skipping of SGCG occurred in normal cells and those with multiple distinct SGCG mutations, including the most common 521ΔT mutation. These findings demonstrate a multiexon-skipping strategy applicable to the majority of limb-girdle muscular dystrophy 2C patients.


Subject(s)
Morpholinos/genetics , Sarcoglycanopathies/genetics , Sarcoglycanopathies/therapy , Sarcoglycans/genetics , Cells, Cultured , Cellular Reprogramming , Exons , Fibroblasts/metabolism , Genetic Therapy , Humans , Microscopy, Fluorescence , Mutation , Primary Cell Culture , RNA Splicing , Reading Frames , Sarcoglycanopathies/metabolism , Sarcoglycans/metabolism , Transduction, Genetic , Urine/cytology
3.
Circulation ; 136(16): 1477-1491, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-28778945

ABSTRACT

BACKGROUND: Cardiomyopathy and arrhythmias are under significant genetic influence. Here, we studied a family with dilated cardiomyopathy and associated conduction system disease in whom prior clinical cardiac gene panel testing was unrevealing. METHODS: Whole-genome sequencing and induced pluripotent stem cells were used to examine a family with dilated cardiomyopathy and atrial and ventricular arrhythmias. We also characterized a mouse model with heterozygous and homozygous deletion of Mybphl. RESULTS: Whole-genome sequencing identified a premature stop codon, R255X, in the MYBPHL gene encoding MyBP-HL (myosin-binding protein-H like), a novel member of the myosin-binding protein family. MYBPHL was found to have high atrial expression with low ventricular expression. We determined that MyBP-HL protein was myofilament associated in the atria, and truncated MyBP-HL protein failed to incorporate into the myofilament. Human cell modeling demonstrated reduced expression from the mutant MYBPHL allele. Echocardiography of Mybphl heterozygous and null mouse hearts exhibited a 36% reduction in fractional shortening and an increased diastolic ventricular chamber size. Atria weight normalized to total heart weight was significantly increased in Mybphl heterozygous and null mice. Using a reporter system, we detected robust expression of Mybphl in the atria, and in discrete puncta throughout the right ventricular wall and septum, as well. Telemetric electrocardiogram recordings in Mybphl mice revealed cardiac conduction system abnormalities with aberrant atrioventricular conduction and an increased rate of arrhythmia in heterozygous and null mice. CONCLUSIONS: The findings of reduced ventricular function and conduction system defects in Mybphl mice support that MYBPHL truncations may increase risk for human arrhythmias and cardiomyopathy.


Subject(s)
Arrhythmias, Cardiac/metabolism , Cardiomyopathy, Dilated/metabolism , Cytoskeletal Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Myofibrils/metabolism , Animals , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Atrial Function , Cardiomyopathy, Dilated/diagnostic imaging , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/physiopathology , Cells, Cultured , Cytoskeletal Proteins/genetics , Disease Models, Animal , Echocardiography , Electrocardiography , Genetic Predisposition to Disease , Heart Atria/metabolism , Heart Atria/physiopathology , Heart Conduction System/metabolism , Heart Conduction System/physiopathology , Heart Rate , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Heterozygote , Homozygote , Humans , Mice, Inbred C57BL , Mice, Knockout , Myocardial Contraction , Phenotype , Ventricular Function
4.
Skelet Muscle ; 6: 32, 2016.
Article in English | MEDLINE | ID: mdl-27651888

ABSTRACT

BACKGROUND: Cellular models of muscle disease are taking on increasing importance with the large number of genes and mutations implicated in causing myopathies and the concomitant need to test personalized therapies. Developing cell models relies on having an easily obtained source of cells, and if the cells are not derived from muscle itself, a robust reprogramming process is needed. Fibroblasts are a human cell source that works well for the generation of induced pluripotent stem cells, which can then be differentiated into cardiomyocyte lineages, and with less efficiency, skeletal muscle-like lineages. Alternatively, direct reprogramming with the transcription factor MyoD has been used to generate myotubes from cultured human fibroblasts. Although useful, fibroblasts require a skin biopsy to obtain and this can limit their access, especially from pediatric populations. RESULTS: We now demonstrate that direct reprogramming of urine-derived cells is a highly efficient and reproducible process that can be used to establish human myogenic cells. We show that this method can be applied to urine cells derived from normal individuals as well as those with muscle diseases. Furthermore, we show that urine-derived cells can be edited using CRISPR/Cas9 technology. CONCLUSIONS: With progress in understanding the molecular etiology of human muscle diseases, having a readily available, noninvasive source of cells from which to generate muscle-like cells is highly useful.


Subject(s)
Cellular Reprogramming , Muscle Development , Muscular Diseases/physiopathology , MyoD Protein/metabolism , Urine/cytology , Cell Culture Techniques , Cell Differentiation , Cells, Cultured , Clone Cells , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing , Humans , Muscular Diseases/metabolism , Muscular Dystrophies/metabolism , Muscular Dystrophies/physiopathology
5.
Proc Natl Acad Sci U S A ; 111(16): 6004-9, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24717843

ABSTRACT

Many monogenic disorders, including the muscular dystrophies, display phenotypic variability despite the same disease-causing mutation. To identify genetic modifiers of muscular dystrophy and its associated cardiomyopathy, we used quantitative trait locus mapping and whole genome sequencing in a mouse model. This approach uncovered a modifier locus on chromosome 11 associated with sarcolemmal membrane damage and heart mass. Whole genome and RNA sequencing identified Anxa6, encoding annexin A6, as a modifier gene. A synonymous variant in exon 11 creates a cryptic splice donor, resulting in a truncated annexin A6 protein called ANXA6N32. Live cell imaging showed that annexin A6 orchestrates a repair zone and cap at the site of membrane disruption. In contrast, ANXA6N32 dramatically disrupted the annexin A6-rich cap and the associated repair zone, permitting membrane leak. Anxa6 is a modifier of muscular dystrophy and membrane repair after injury.


Subject(s)
Annexin A6/metabolism , Muscular Dystrophy, Animal/pathology , Sarcolemma/metabolism , Sarcolemma/pathology , Wound Healing , Abdominal Muscles/pathology , Alternative Splicing/genetics , Animals , Annexin A6/genetics , Chromosomes, Mammalian/genetics , Disease Susceptibility , Genes, Modifier , Genetic Variation , Heart Ventricles/pathology , Intracellular Space/metabolism , Membranes/pathology , Mice , Mice, Inbred C57BL , Muscular Dystrophy, Animal/genetics , Organ Size , Protein Transport , Quantitative Trait Loci/genetics , Wound Healing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...