Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Arch Pharm Res ; 38(9): 1606-16, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26211662

ABSTRACT

The heterologous expression of biosynthetic pathways is an indispensable tool for drug discovery and development from natural products. Streptomyces venezuelae is a promising heterologous host as it offers several attractive advantages, such as rapid growth rate, convenient genetic manipulation, and an abundant supply of common biosynthetic building blocks. In recent decades, several S. venezuelae mutant strains have been constructed and used to facilitate the synthesis and derivatization of diverse natural products. In this review article, we have provided a schematic look at these host strains, which were used to synthesize natural products from genetically engineered biosynthetic gene clusters.


Subject(s)
Drug Discovery/methods , Genetic Engineering/methods , Streptomyces/genetics , Streptomyces/metabolism , Animals , Humans
2.
Appl Microbiol Biotechnol ; 98(8): 3701-13, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24413979

ABSTRACT

Streptomyces venezuelae has an inherent advantage as a heterologous host for polyketide production due to its fast rate of growth that cannot be endowed easily through metabolic engineering. However, the utility of S. venezuelae as a host has been limited thus far due to its inadequate intracellular reserves of the (2S)-ethylmalonyl-CoA building block needed to support the biosynthesis of polyketides preventing the efficient production of the desired metabolite, such as tylactone. Here, via precursor supply engineering, we demonstrated that S. venezuelae can be developed into a more efficient general heterologous host for the quick production of polyketides. We first identified and functionally characterized the ethylmalonyl-CoA pathway which plays a major role in supplying the (2S)-ethylmalonyl-CoA extender unit in S. venezuelae. Next, S. venezuelae was successfully engineered to increase the intracellular ethylmalonyl-CoA concentration by the deletion of the meaA gene encoding coenzyme B12-dependent ethylmalonyl-CoA mutase in combination with ethylmalonate supplementation and was engineered to upregulate the expression of the heterologous tylosin PKS by overexpression of the pathway specific regulatory gene pikD. Thus, a dramatic increase (∼10-fold) in tylactone production was achieved. In addition, the detailed insights into the role of the ethylmalonyl-CoA pathway, which is present in most streptomycetes, provides a general strategy to increase the ethylmalonyl-CoA supply for polyketide biosynthesis in the most prolific family of polyketide-producing bacteria.


Subject(s)
Acyl Coenzyme A/metabolism , Anti-Bacterial Agents/metabolism , Metabolic Engineering , Metabolic Networks and Pathways/genetics , Polyketides/metabolism , Streptomyces/genetics , Streptomyces/metabolism , Gene Deletion , Gene Expression , Molecular Sequence Data , Sequence Analysis, DNA
3.
Appl Environ Microbiol ; 77(14): 4912-23, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21602397

ABSTRACT

Doxorubicin, one of the most widely used anticancer drugs, is composed of a tetracyclic polyketide aglycone and l-daunosamine as a deoxysugar moiety, which acts as an important determinant of its biological activity. This is exemplified by the fewer side effects of semisynthetic epirubicin (4'-epi-doxorubicin). An efficient combinatorial biosynthetic system that can convert the exogenous aglycone ε-rhodomycinone into diverse glycosylated derivatives of doxorubicin or its biosynthetic intermediates, rhodomycin D and daunorubicin, was developed through the use of Streptomyces venezuelae mutants carrying plasmids that direct the biosynthesis of different nucleotide deoxysugars and their transfer onto aglycone, as well as the postglycosylation modifications. This system improved epirubicin production from ε-rhodomycinone by selecting a substrate flexible glycosyltransferase, AknS, which was able to transfer the unnatural sugar donors and a TDP-4-ketohexose reductase, AvrE, which efficiently supported the biosynthesis of TDP-4-epi-l-daunosamine. Furthermore, a range of doxorubicin analogs containing diverse deoxysugar moieties, seven of which are novel rhodomycin D derivatives, were generated. This provides new insights into the functions of deoxysugar biosynthetic enzymes and demonstrates the potential of the S. venezuelae-based combinatorial biosynthetic system as a simple biological tool for modifying structurally complex sugar moieties attached to anthracyclines as an alternative to chemical syntheses for improving anticancer agents.


Subject(s)
Doxorubicin/metabolism , Streptomyces/genetics , Streptomyces/metabolism , Anthracyclines/metabolism , Daunorubicin/metabolism , Doxorubicin/chemistry , Epirubicin , Genetic Engineering , Glycosylation , Glycosyltransferases/metabolism , Multigene Family , Plasmids/genetics
4.
J Biotechnol ; 141(3-4): 181-8, 2009 May 20.
Article in English | MEDLINE | ID: mdl-19433224

ABSTRACT

Phenylpropanoids, including flavonoids and stilbenes, are plant secondary metabolites with potential pharmacological and nutraceutical properties. To expand the applicability of Streptomyces venezuelae as a heterologous host to plant polyketide production, flavonoid and stilbene biosynthetic genes were expressed in an engineered strain of S. venezuelae DHS2001 bearing a deletion of native pikromycin polyketide synthase gene. A plasmid expressing the 4-coumarate/cinnamate:coenzyme A ligase from Streptomyces coelicolor (ScCCL) and the chalcone synthase from Arabidopsis thaliana (atCHS) under the control of a single ermE* promoter was constructed and introduced into S. venezuelae DHS2001. The resulting strain produced racemic naringenin and pinocembrin from 4-coumaric acid and cinnamic acid, respectively. Placement of an additional ermE* promoter upstream of the codon-optimized atCHS (atCHS(op)) gene significantly increased the yield of both flavanones. Expression of codon-optimized chalcone isomerase gene from Medicago sativa, together with ScCCL and atCHS(op) genes led to production of (2S)-flavanones, but the yield was reduced. On the other hand, a recombinant strain harboring the ScCCL and codon-optimized stilbene synthase gene from Arachis hypogaea generated stilbenes such as resveratrol and pinosylvin. This is the first report on the heterologous expression of plant phenylpropanoid biosynthetic pathways in Streptomyces genus.


Subject(s)
Arabidopsis/enzymology , Flavanones/metabolism , Genetic Engineering/methods , Stilbenes/metabolism , Streptomyces/enzymology , Acyltransferases/genetics , Acyltransferases/metabolism , Codon , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Escherichia coli/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
5.
Chem Commun (Camb) ; (44): 5782-4, 2008 Nov 30.
Article in English | MEDLINE | ID: mdl-19009080

ABSTRACT

An unusual set of reduced macrolide antibiotics was discovered by combination of organic synthesis and a biosynthetic approach using the unique metabolic diversity of Streptomyces venezuelae; two unnatural 16-membered ring macrolides are also created by employing this bio-catalyst.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Macrolides/metabolism , Streptomyces/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Disk Diffusion Antimicrobial Tests , Macrolides/chemistry , Macrolides/pharmacology , Multigene Family , Streptomyces/genetics
6.
Appl Microbiol Biotechnol ; 81(1): 109-17, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18769916

ABSTRACT

Epothilones, produced from the myxobacterium Sorangium cellulosum, are potential anticancer agents that stabilize microtubules in a similar manner to paclitaxel. The entire epothilone biosynthetic gene cluster was heterologously expressed in an engineered strain of Streptomyces venezuelae bearing a deletion of pikromycin polyketide synthase gene cluster. The resulting strains produced approximately 0.1 microg/l of epothilone B as a sole product after 4 days cultivation. Deletion of an epoF encoding the cytochrome P450 epoxidase gave rise to a mutant that selectively produces 0.4 microg/l of epothilone D. To increase the production level of epothilones B and D, an additional copy of the positive regulatory gene pikD was introduced into the chromosome of both S. venezuleae mutant strains. The resulting strains showed enhanced production of corresponding compounds (approximately 2-fold). However, deletion of putative transport genes, orf3 and orf14 in the epothilone D producing S. venezuelae mutant strain, led to an approximately 3-fold reduction in epothilone D production. These results introduce S. venezuelae as an alternative heterologous host for the production of these valuable anticancer agents and demonstrate the possibility of engineering this strain as a generic heterologous host for the production of polyketides and hybrid polyketide-nonribosomal peptides.


Subject(s)
Epothilones/metabolism , Genetic Engineering , Industrial Microbiology , Streptomyces/genetics , Streptomyces/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Epothilones/chemistry , Gene Dosage , Genetic Vectors/genetics , Open Reading Frames , Oxidoreductases/genetics , Oxidoreductases/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Sequence Deletion , Streptomyces/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL