Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066166

ABSTRACT

Bismuth-Telluride-based compounds are unique materials for thermoelectric cooling applications. Because Bi2Te3 is a narrow gap semiconductor, the bipolar diffusion effect is a critical issue to enhance thermoelectric performance. Here, we report the significant reduction of thermal conductivity by decreasing lattice and bipolar thermal conductivity in extrinsic phase mixing of MgO and VO2 nanoparticles in Bi0.5Sb1.5Te3 (BST) bulk matrix. When we separate the thermal conductivity by electronic κel, lattice κlat, and bipolar κbi thermal conductivities, all the contributions in thermal conductivities are decreased with increasing the concentration of oxide particle distribution, indicating the effective phonon scattering with an asymmetric scattering of carriers. The reduction of thermal conductivity affects the improvement of the ZT values. Even though significant carrier filtering effect is not observed in the oxide bulk composites due to micro-meter size agglomeration of particles, the interface between oxide and bulk matrix scatters carriers giving rise to the increase of the Seebeck coefficient and electrical resistivity. Therefore, we suggest the extrinsic phase mixing of nanoparticles decreases lattice and bipolar thermal conductivity, resulting in the enhancement of thermoelectric performance over a wide temperature range.

2.
Materials (Basel) ; 14(8)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921358

ABSTRACT

We investigated the thermoelectric properties of the Pb0.75Sn0.25Se and Pb0.79Sn0.25Se1-xClx (x = 0.0, 0.2, 0.3, 0.5, 1.0, 2.0 mol.%) compounds, synthesized by hot-press sintering. The electrical transport properties showed that low concentration doping of Cl (below 0.3 mol.%) in the Pb-excess (Pb,Sn)Se samples increased the carrier concentration and the Hall mobility by the increase of carriers' mean free path. The effective mass of the carrier was also enhanced from the measurements of the Seebeck coefficient. The enhanced effective masses of the carrier by the Cl-doping can be understood by the enhanced electron-phonon interaction, caused by the crystalline mirror symmetry breaking. The significantly decreased lattice thermal conductivities showed that the crystalline mirror symmetry breaking decreased the lattice thermal conductivity of the Pb-excess (Pb,Sn)Se. By the Cl-doping and the Pb-excess's synergistic effect, which can suppress the bipolar effect, the zT values of x = 0.2 and 0.3 mol.% reached 0.8 at 773 K. Therefore, we suggest that Pb-excess and the crystalline mirror symmetry breaking by Cl-doping are effective for high thermoelectric performance in the (Pb,Sn)Se.

3.
Phys Rev Lett ; 122(16): 167202, 2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31075021

ABSTRACT

We report on magnetization M(H), dc and ac magnetic susceptibility χ(T), specific heat C_{m}(T) and muon spin relaxation (µSR) measurements of the Kitaev honeycomb iridate Cu_{2}IrO_{3} with quenched disorder. In spite of the chemical disorders, we find no indication of spin glass down to 260 mK from the C_{m}(T) and µSR data. Furthermore, a persistent spin dynamics observed by the zero-field muon spin relaxation evidences an absence of static magnetism. The remarkable observation is a scaling relation of χ[H,T] and M[H,T] in H/T with the scaling exponent α=0.26-0.28, expected from bond randomness. However, C_{m}[H,T]/T disobeys the predicted universal scaling law, pointing towards the presence of additional low-lying excitations on the background of bond-disordered spin liquid. Our results signify a many-faceted impact of quenched disorder in a Kitaev spin system due to its peculiar bond character.

4.
ACS Nano ; 13(4): 3806-3815, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30735348

ABSTRACT

Considerable efforts have been devoted to enhancing thermoelectric performance, by employing phonon scattering from nanostructural architecture, and material design using phonon-glass and electron-crystal concepts. The nanostructural approach helps to lower thermal conductivity but has limited effect on the power factor. Here, we demonstrate selective charge Anderson localization as a route to maximize the Seebeck coefficient while simultaneously preserving high electrical conductivity and lowering the lattice thermal conductivity. We confirm the viability of interface potential modification in an n-type Bi-doped PbTe/Ag2Te nanocomposite and the resulting enhancement in thermoelectric figure-of-merit ZT. The introduction of random potentials via Ag2Te nanoparticle distribution using extrinsic phase mixing was determined using scanning tunneling spectroscopy measurements. When the Ag2Te undergoes a structural phase transition ( T > 420 K) from monoclinic ß-Ag2Te to cubic α-Ag2Te, the band gap in the α-Ag2Te increases due to the p -d hybridization. This results in a decrease in the potential barrier height, which gives rise to partial delocalization of the electrons, while wave packets of the holes are still in a localized state. Using this strategic approach, we achieved an exceptionally high thermoelectric figure-of-merit in n-type PbTe materials, a ZT greater than 2.0, suitable for waste heat power generation.

5.
ACS Appl Mater Interfaces ; 10(13): 10927-10934, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29533597

ABSTRACT

Topological insulators generally share commonalities with good thermoelectric (TE) materials because of their narrow band gaps and heavy constituent elements. Here, we propose that a topological crystalline insulator (TCI) could exhibit a high TE performance by breaking its crystalline symmetry and tuning the chemical potential by elemental doping. As a candidate material, we investigate the TE properties of the Cl-doped TCI Pb0.7Sn0.3Se. The infrared absorption spectra reveal that the band gap is increased from 0.055 eV for Pb0.7Sn0.3Se to 0.075 eV for Pb0.7Sn0.3Se0.99Cl0.01, confirming that the Cl doping can break the crystalline mirror symmetry of a TCI Pb0.7Sn0.3Se and thereby enlarge its bulk electronic band gap. The topological band inversion is confirmed by the extended X-ray absorption fine structure spectroscopy, which shows that the TCI state is weakened in a chlorine x = 0.05-doped compound. The small gap opening and partial linear band dispersion with massless and massive bands may have a high power factor (PF) for high electrical conductivity with an enhancement of the Seebeck coefficient. As a result, Pb0.7Sn0.3Se0.99Cl0.01 shows a considerably enhanced ZT of 0.64 at 823 K, which is about 1200% enhancement in ZT compared with that of the undoped Pb0.7Sn0.3Se. This work demonstrates that the optimal n-type Cl doping tunes the chemical potential together with breaking the state of the TCI, suppresses the bipolar conduction at high temperatures, and thereby enables the Seebeck coefficient to increase up to 823 K, resulting in a significantly enhanced PF at high temperatures. In addition, the bipolar contribution to thermal conductivity is effectively suppressed for the Cl-doped samples of Pb0.7Sn0.3Se1- xCl x ( x ≥ 0.01). We propose that breaking the crystalline mirror symmetry in TCIs could be a new research direction for exploring high-performance TE materials.

6.
ACS Appl Mater Interfaces ; 10(14): 11613-11622, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29565556

ABSTRACT

Topological insulators have attracted much interest in topological states of matter featuring unusual electrical conduction behaviors. It has been recently reported that a topological crystalline insulator could exhibit a high thermoelectric performance by breaking its crystal symmetry via chemical doping. Here, we investigate the multiple effects of Na, Se, and S alloying on thermoelectric properties of a topological crystalline insulator Pb0.6Sn0.4Te. The Na doping is known to be effective for breaking the crystalline mirror symmetry of Pb0.6Sn0.4Te. We demonstrate that simultaneous emergence of band convergence by Se alloying and nanostructuring by S doping enhance the power factor and decrease lattice thermal conductivity, respectively. Remarkably, the high power factor of 22.3 µW cm-1 K-2 at 800 K is achieved for Na 1%-doped Pb0.6Sn0.4Te0.90Se0.05S0.05 mainly due to a relatively high Seebeck coefficient via band convergence by Se alloying as well as the suppression of bipolar conduction at high temperatures by the increase of energy band gap. Furthermore, the lattice thermal conductivity is significantly suppressed by PbS nanoprecipitates without deteriorating the hole carrier mobility, ranging from 0.80 W m-1 K-1 for Pb0.6Sn0.4Te to 0.17 W m-1 K-1 at 300 K for Pb0.6Sn0.4Te0.85Se0.10S0.05. As a result, the synergistically combined effects of breaking the crystalline mirror symmetry of topological crystalline insulator, band convergence, and nanostructuring for Pb0.6Sn0.4Te0.95- xSe xS0.05 ( x = 0, 0.05, 0.1, 0.2, and 0.95) give rise to an impressively high ZT of 1.59 at 800 K for x = 0.05. We suggest that the multiple doping in topological crystalline insulators is effective for improving the thermoelectric performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...