Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 12469, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28963493

ABSTRACT

In this study, we propose a self-activated radical doping (SRD) method on the catalyzed surface of amorphous oxide film that can improve both the electrical characteristics and the stability of amorphous oxide films through oxidizing oxygen vacancy using hydroxyl radical which is a strong oxidizer. This SRD method, which uses UV irradiation and thermal hydrogen peroxide solution treatment, effectively decreased the amount of oxygen vacancies and facilitated self-passivation and doping effect by radical reaction with photo-activated oxygen defects. As a result, the SRD-treated amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) showed superior electrical performances compared with non-treated a-IGZO TFTs. The mobility increased from 9.1 to 17.5 cm2/Vs, on-off ratio increased from 8.9 × 107 to 7.96 × 109, and the threshold voltage shift of negative bias-illumination stress for 3600 secs under 5700 lux of white LED and negative bias-temperature stress at 50 °C decreased from 9.6 V to 4.6 V and from 2.4 V to 0.4 V, respectively.

2.
Korean J Parasitol ; 54(1): 103-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26951988

ABSTRACT

The objective of this study was to evaluate the effects of several different commercial disinfectants on the embryogenic development of Ascaris suum eggs. A 1-ml aliquot of each disinfectant was mixed with approximately 40,000 decorticated or intact A. suum eggs in sterile tubes. After each treatment time (at 0.5, 1, 5, 10, 30, and 60 min), disinfectants were washed away, and egg suspensions were incubated at 25˚C in distilled water for development of larvae inside. At 3 weeks of incubation after exposure, ethanol, methanol, and chlorohexidin treatments did not affect the larval development of A. suum eggs, regardless of their concentration and treatment time. Among disinfectants tested in this study, 3% cresol, 0.2% sodium hypochlorite and 0.02% sodium hypochlorite delayed but not inactivated the embryonation of decorticated eggs at 3 weeks of incubation, because at 6 weeks of incubation, undeveloped eggs completed embryonation regardless of exposure time, except for 10% povidone iodine. When the albumin layer of A. suum eggs remained intact, however, even the 10% povidone iodine solution took at least 5 min to reasonably inactivate most eggs, but never completely kill them with even 60 min of exposure. This study demonstrated that the treatment of A. suum eggs with many commercially available disinfectants does not affect the embryonation. Although some disinfectants may delay or stop the embryonation of A. suum eggs, they can hardly kill them completely.


Subject(s)
Ascaris suum/drug effects , Disinfectants/toxicity , Embryonic Development/drug effects , Animals , Embryo, Nonmammalian/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...