Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 21(1): 415, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32571207

ABSTRACT

BACKGROUND: Artemisia in East Asia includes a number of economically important taxa that are widely used for food, medicinal, and ornamental purposes. The identification of taxa, however, has been hampered by insufficient diagnostic morphological characteristics and frequent natural hybridization. Development of novel DNA markers or barcodes with sufficient resolution to resolve taxonomic issues of Artemisia in East Asia is significant challenge. RESULTS: To establish a molecular basis for taxonomic identification and comparative phylogenomic analysis of Artemisia, we newly determined 19 chloroplast genome (plastome) sequences of 18 Artemisia taxa in East Asia, de novo-assembled and annotated the plastomes of two taxa using publicly available Illumina reads, and compared them with 11 Artemisia plastomes reported previously. The plastomes of Artemisia were 150,858-151,318 base pairs (bp) in length and harbored 87 protein-coding genes, 37 transfer RNAs, and 8 ribosomal RNA genes in conserved order and orientation. Evolutionary analyses of whole plastomes and 80 non-redundant protein-coding genes revealed that the noncoding trnH-psbA spacer was highly variable in size and nucleotide sequence both between and within taxa, whereas the coding sequences of accD and ycf1 were under weak positive selection and relaxed selective constraints, respectively. Phylogenetic analysis of the whole plastomes based on maximum likelihood and Bayesian inference analyses yielded five groups of Artemisia plastomes clustered in the monophyletic subgenus Dracunculus and paraphyletic subgenus Artemisia, suggesting that the whole plastomes can be used as molecular markers to infer the chloroplast haplotypes of Artemisia taxa. Additionally, analysis of accD and ycf1 hotspots enabled the development of novel markers potentially applicable across the family Asteraceae with high discriminatory power. CONCLUSIONS: The complete sequences of the Artemisia plastomes are sufficiently polymorphic to be used as super-barcodes for this genus. It will facilitate the development of new molecular markers and study of the phylogenomic relationships of Artemisia species in the family Asteraceae.


Subject(s)
Artemisia/classification , Chloroplasts/genetics , Whole Genome Sequencing/methods , Artemisia/genetics , Bayes Theorem , Chloroplasts/classification , Evolution, Molecular , Genetic Variation , Genome Size , Genome, Chloroplast , High-Throughput Nucleotide Sequencing , Interatrial Block , Phylogeny
2.
Sci Rep ; 9(1): 5952, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30976084

ABSTRACT

Gibberellin (GA) plays a controversial role in the legume-rhizobium symbiosis. Recent studies have shown that the GA level in legumes must be precisely controlled for successful rhizobial infection and nodule organogenesis. However, regulation of the GA level via catabolism in legume roots has not been reported to date. Here, we investigate a novel GA inactivating C20-GA2-oxidase gene MtGA2ox10 in Medicago truncatula. RNA sequencing analysis and quantitative polymerase chain reaction revealed that MtGA2ox10 was induced as early as 6 h post-inoculation (hpi) of rhizobia and reached peak transcript abundance at 12 hpi. Promoter::ß-glucuronidase fusion showed that the promoter activity was localized in the root infection/differentiation zone during the early stage of rhizobial infection and in the vascular bundle of the mature nodule. The CRISPR/Cas9-mediated deletion mutation of MtGA2ox10 suppressed infection thread formation, which resulted in reduced development and retarded growth of nodules on the Agrobacterium rhizogenes-transformed roots. Over-expression of MtGA2ox10 in the stable transgenic plants caused dwarfism, which was rescued by GA3 application, and increased infection thread formation but inhibition of nodule development. We conclude that MtGA2ox10 plays an important role in the rhizobial infection and the development of root nodules through fine catabolic tuning of GA in M. truncatula.


Subject(s)
Medicago truncatula/growth & development , Medicago truncatula/microbiology , Oxidoreductases/metabolism , Plant Proteins/metabolism , Plant Root Nodulation , Rhizobium/pathogenicity , Root Nodules, Plant/growth & development , Gene Expression Regulation, Plant , Medicago truncatula/metabolism , Oxidoreductases/genetics , Plant Proteins/genetics , Root Nodules, Plant/metabolism , Root Nodules, Plant/microbiology , Symbiosis
3.
Genome Biol ; 19(1): 127, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30180884

ABSTRACT

BACKGROUND: Hybridization is an important evolutionary process that results in increased plant diversity. Flowering Prunus includes popular cherry species that are appreciated worldwide for their flowers. The ornamental characteristics were acquired both naturally and through artificially hybridizing species with heterozygous genomes. Therefore, the genome of hybrid flowering Prunus presents important challenges both in plant genomics and evolutionary biology. RESULTS: We use long reads to sequence and analyze the highly heterozygous genome of wild Prunus yedoensis. The genome assembly covers > 93% of the gene space; annotation identified 41,294 protein-coding genes. Comparative analysis of the genome with 16 accessions of six related taxa shows that 41% of the genes were assigned into the maternal or paternal state. This indicates that wild P. yedoensis is an F1 hybrid originating from a cross between maternal P. pendula f. ascendens and paternal P. jamasakura, and it can be clearly distinguished from its confusing taxon, Yoshino cherry. A focused analysis of the S-locus haplotypes of closely related taxa distributed in a sympatric natural habitat suggests that reduced restriction of inter-specific hybridization due to strong gametophytic self-incompatibility is likely to promote complex hybridization of wild Prunus species and the development of a hybrid swarm. CONCLUSIONS: We report the draft genome assembly of a natural hybrid Prunus species using long-read sequencing and sequence phasing. Based on a comprehensive comparative genome analysis with related taxa, it appears that cross-species hybridization in sympatric habitats is an ongoing process that facilitates the diversification of flowering Prunus.


Subject(s)
Genome, Plant , Hybridization, Genetic , Prunus/genetics , Flowers/genetics , Fruit/genetics , Gene Expression , Genes, Plant , Genomics , Haplotypes , Prunus/metabolism , Sequence Analysis, DNA , Sympatry
4.
Mitochondrial DNA B Resour ; 3(1): 359-360, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-33474169

ABSTRACT

We determined the complete chloroplast DNA sequence of Artemisia hallaisanensis Nakai, an endemic herbal species distributed on Jeju Island, Korea. The chloroplast DNA is 151,015 bp in length and encodes 4 rRNA, 30 tRNA, and 80 protein-coding genes. Phylogenetic analysis and sequence comparison of protein-coding genes with other Artemisa chloroplast DNAs revealed that the chloroplast genome of A. hallaisanensis is closely related to that of A. capillaris. Additionally, a unique 9 bp deletion in ycf1 gene is specific to A. hallaisanensis.

5.
Article in English | MEDLINE | ID: mdl-26709548

ABSTRACT

We determined the complete chloroplast DNA sequence of Aconitum chiisanense Nakai, a rare Aconitum species endemic to Korea. The chloroplast genome is 155 934 bp in length and contains 4 rRNA, 30 tRNA, and 78 protein-coding genes. Phylogenetic analysis revealed that the chloroplast genome of A. chiisanense is closely related to that of A. barbatum var. puberulum. Sequence comparison with other Ranunculaceae chloroplasts identified a unique deletion in the rps16 gene of A. chiisanense chloroplast DNA that can serve as a molecular marker for species identification.


Subject(s)
Aconitum/genetics , Genes, Chloroplast , Genome, Chloroplast , Phylogeny , Base Sequence , DNA, Chloroplast , Genome Size , Genome, Plant , Genomics , Republic of Korea , Sequence Analysis, DNA
6.
Theor Appl Genet ; 129(9): 1797-814, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27377547

ABSTRACT

KEY MESSAGE: This study provides high-quality variation data of diverse radish genotypes. Genome-wide SNP comparison along with RNA-seq analysis identified candidate genes related to domestication that have potential as trait-related markers for genetics and breeding of radish. Radish (Raphanus sativus L.) is an annual root vegetable crop that also encompasses diverse wild species. Radish has a long history of domestication, but the origins and selective sweep of cultivated radishes remain controversial. Here, we present comprehensive whole-genome resequencing analysis of radish to explore genomic variation between the radish genotypes and to identify genetic bottlenecks due to domestication in Asian cultivars. High-depth resequencing and multi-sample genotyping analysis of ten cultivated and seven wild accessions obtained 4.0 million high-quality homozygous single-nucleotide polymorphisms (SNPs)/insertions or deletions. Variation analysis revealed that Asian cultivated radish types are closely related to wild Asian accessions, but are distinct from European/American cultivated radishes, supporting the notion that Asian cultivars were domesticated from wild Asian genotypes. SNP comparison between Asian genotypes identified 153 candidate domestication regions (CDRs) containing 512 genes. Network analysis of the genes in CDRs functioning in plant signaling pathways and biochemical processes identified group of genes related to root architecture, cell wall, sugar metabolism, and glucosinolate biosynthesis. Expression profiling of the genes during root development suggested that domestication-related selective advantages included a main taproot with few branched lateral roots, reduced cell wall rigidity and favorable taste. Overall, this study provides evolutionary insights into domestication-related genetic selection in radish as well as identification of gene candidates with the potential to act as trait-related markers for background selection of elite lines in molecular breeding.


Subject(s)
Domestication , Genome, Plant , Raphanus/genetics , Evolution, Molecular , Genotype , INDEL Mutation , Polymorphism, Single Nucleotide , RNA, Plant/genetics , Sequence Analysis, RNA
7.
Theor Appl Genet ; 129(7): 1357-1372, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27038817

ABSTRACT

KEYMESSAGE: This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.


Subject(s)
Genome, Plant , Raphanus/genetics , Brassica/genetics , Chromosome Mapping , Chromosomes, Plant , Comparative Genomic Hybridization , DNA, Plant/genetics , High-Throughput Nucleotide Sequencing , Phylogeny , Sequence Analysis, DNA
8.
Article in English | MEDLINE | ID: mdl-25093401

ABSTRACT

We determined the complete chloroplast DNA sequence of Phalaenopsis "Tiny Star" based on Illumina sequencing. The total length of the chloroplast genome is 148,918 bp long with GC content of 36.7%. It contains 70 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Comparative analysis with the reported orchid chloroplast sequences identified unique InDel variations in the "Tiny Star" chloroplast genome that have potential as genetic markers to investigate the maternal lineage of Phalaenopsis and Doritaenopsis cultivars.


Subject(s)
Genome, Chloroplast , Orchidaceae/genetics , Sequence Analysis, DNA/methods , Animals , Base Composition , Chloroplasts/genetics , Genome Size , Genome, Plant , INDEL Mutation , Phylogeny
9.
Mitochondrial DNA B Resour ; 1(1): 688-689, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-33473597

ABSTRACT

We determined the complete chloroplast genome sequences of Aconitum austrokoreense Koidz., an endangered endemic species in Korea. The chloroplast DNA is 155,682 bp in length and encodes 37 tRNAs, 8 rRNAs, and 86 protein-coding genes. Phylogenetic analysis and sequence comparison of protein-coding genes with those in other Ranunculaceae chloroplast DNAs showed that the chloroplast genome of A. austrokoreense is closely related to that of A. chiisanense and large sequence variations identified in rps16, matK, and rpl20 are specific to these two species.

10.
Plant Physiol ; 169(1): 233-65, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26175514

ABSTRACT

The legume-rhizobium symbiosis is initiated through the activation of the Nodulation (Nod) factor-signaling cascade, leading to a rapid reprogramming of host cell developmental pathways. In this work, we combine transcriptome sequencing with molecular genetics and network analysis to quantify and categorize the transcriptional changes occurring in roots of Medicago truncatula from minutes to days after inoculation with Sinorhizobium medicae. To identify the nature of the inductive and regulatory cues, we employed mutants with absent or decreased Nod factor sensitivities (i.e. Nodulation factor perception and Lysine motif domain-containing receptor-like kinase3, respectively) and an ethylene (ET)-insensitive, Nod factor-hypersensitive mutant (sickle). This unique data set encompasses nine time points, allowing observation of the symbiotic regulation of diverse biological processes with high temporal resolution. Among the many outputs of the study is the early Nod factor-induced, ET-regulated expression of ET signaling and biosynthesis genes. Coupled with the observation of massive transcriptional derepression in the ET-insensitive background, these results suggest that Nod factor signaling activates ET production to attenuate its own signal. Promoter:ß-glucuronidase fusions report ET biosynthesis both in root hairs responding to rhizobium as well as in meristematic tissue during nodule organogenesis and growth, indicating that ET signaling functions at multiple developmental stages during symbiosis. In addition, we identified thousands of novel candidate genes undergoing Nod factor-dependent, ET-regulated expression. We leveraged the power of this large data set to model Nod factor- and ET-regulated signaling networks using MERLIN, a regulatory network inference algorithm. These analyses predict key nodes regulating the biological process impacted by Nod factor perception. We have made these results available to the research community through a searchable online resource.


Subject(s)
Ethylenes/metabolism , High-Throughput Nucleotide Sequencing/methods , Medicago truncatula/genetics , Medicago truncatula/microbiology , Plant Proteins/metabolism , Plant Roots/genetics , Signal Transduction/drug effects , Transcriptome/genetics , Biosynthetic Pathways/drug effects , Biosynthetic Pathways/genetics , Cluster Analysis , Ethylenes/pharmacology , Feedback, Physiological , Gene Expression Regulation, Plant/drug effects , Gene Ontology , Gene Regulatory Networks , Genes, Plant , Medicago truncatula/drug effects , Plant Proteins/genetics , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/microbiology , Rhizobium/drug effects , Rhizobium/physiology , Signal Transduction/genetics , Symbiosis/genetics , Time Factors , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Transcriptome/drug effects
11.
Hum Genet ; 132(6): 657-68, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23456092

ABSTRACT

Alcohol dependence (AD) is a multifactorial and polygenic disorder involving complex gene-to-gene and gene-to-environment interactions. Several genome-wide association studies have reported numerous risk factors for AD, but replication results following these studies have been controversial. To identify new candidate genes, the present study used GWAS and replication studies in a Korean cohort with AD. Genome-wide association analysis revealed that two chromosome regions on Chr. 4q22-q23 (ADH gene cluster, including ADH5, ADH4, ADH6, ADH1A, ADH1B, and ADH7) and Chr. 12q24 (ALDH2) showed multiple association signals for the risk of AD. To investigate detailed genetic effects of these ADH genes on AD, a follow-up study of the ADH gene cluster on 4q22-q23 was performed. A total of 90 SNPs, including ADH1B rs1229984 (H47R), were genotyped in an additional 975 Korean subjects. In case-control analysis, ADH1B rs1229984 (H47R) showed the most significant association with the risk of AD (p = 2.63 × 10(-21), OR = 2.35). Moreover, subsequent conditional analyses revealed that all positive associations of other ADH genes in the cluster disappeared, which suggested that ADH1B rs1229984 (H47R) might be the sole functional genetic marker across the ADH gene cluster. Our findings could provide additional information on the ADH gene cluster regarding the risk of AD, as well as a new and important insight into the genetic factors associated with AD.


Subject(s)
Alcoholism/genetics , Asian People , Multigene Family , Adult , Aged , Aged, 80 and over , Case-Control Studies , Chromosomes, Human, Pair 12/genetics , Chromosomes, Human, Pair 4/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Middle Aged , Polymorphism, Single Nucleotide , Risk , Young Adult
12.
J Plant Physiol ; 170(3): 291-302, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23158502

ABSTRACT

Proline accumulates in environmentally stressed plant cells including those of legume roots and nodules, but how its level is regulated is poorly understood. Δ(1)-Pyrroline-5-carboxylate synthetase (P5CS), the committed-step enzyme of proline biosynthesis, is encoded by two duplicated genes in many plants. Here, we isolated MtP5CS3, a third gene, from Medicago truncatula, whose predicted polypeptide sequence is highly similar to those of previously isolated MtP5CS1 and MtP5CS2 except an extra amino-terminal segment. MtP5CS3 was strongly expressed under salinity and drought in shoots and nodulating roots, while MtP5CS1 was constitutive and MtP5CS2 induced by abscisic acid. Under salinity, MtP5CS3 promoter was more active than those of MtP5CS1 and MtP5CS2, as shown by GUS fusions. Translationally fused MtP5CS1-GFP was localized in the cytoplasm, whereas significant proportions of MtP5CS2-GFP and MtP5CS3-GFP were co-localized with rubisco small subunit protein-fused RFP in transformed hairy root cells. Under salinity, RNA silencing of MtP5CS1 or MtP5CS2 strongly induced MtP5CS3 expression, while that of MtP5CS3 decreased free proline content and nodule number. Consistently, Mtp5cs3, a loss-of-function mutant, accumulated much less proline, formed fewer nodules, and fixed nitrogen significantly less efficiently than the wild type under salinity. Thus, MtP5CS3 plays a critical role in regulating stress-induced proline accumulation during symbiotic nitrogen fixation.


Subject(s)
Medicago truncatula/genetics , Medicago truncatula/metabolism , Nitrogen/metabolism , Ornithine-Oxo-Acid Transaminase/genetics , Ornithine-Oxo-Acid Transaminase/metabolism , Proline/metabolism , Pyrroles/metabolism , Gene Expression Regulation, Plant , Medicago truncatula/microbiology , Nitrogen Fixation/physiology , Plant Growth Regulators/metabolism , Stress, Physiological , Symbiosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...