Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 6(10): 3017-3026, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27527793

ABSTRACT

Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals.


Subject(s)
Developmental Biology , Drosophila Proteins/genetics , Drosophila/genetics , Enhancer Elements, Genetic , Animals , Chromosome Mapping , Developmental Biology/methods , Drosophila/metabolism , Drosophila Proteins/metabolism , Gene Expression , Gene Expression Regulation, Developmental , Genes, Reporter , Immunohistochemistry , Larva , Mutagenesis, Insertional , Organ Specificity/genetics , Research
2.
PLoS Genet ; 10(8): e1004555, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25101872

ABSTRACT

Insulin is a major regulator of metabolism in metazoans, including the fruit fly Drosophila melanogaster. Genome-wide association studies (GWAS) suggest a genetic basis for reductions of both insulin sensitivity and insulin secretion, phenotypes commonly observed in humans with type 2 diabetes mellitus (T2DM). To identify molecular functions of genes linked to T2DM risk, we developed a genetic tool to measure insulin-like peptide 2 (Ilp2) levels in Drosophila, a model organism with superb experimental genetics. Our system permitted sensitive quantification of circulating Ilp2, including measures of Ilp2 dynamics during fasting and re-feeding, and demonstration of adaptive Ilp2 secretion in response to insulin receptor haploinsufficiency. Tissue specific dissection of this reduced insulin signaling phenotype revealed a critical role for insulin signaling in specific peripheral tissues. Knockdown of the Drosophila orthologues of human T2DM risk genes, including GLIS3 and BCL11A, revealed roles of these Drosophila genes in Ilp2 production or secretion. Discovery of Drosophila mechanisms and regulators controlling in vivo insulin dynamics should accelerate functional dissection of diabetes genetics.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Insulin/metabolism , Animals , Carrier Proteins/genetics , DNA-Binding Proteins , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Fasting , Gene Knockdown Techniques , Genome-Wide Association Study , Humans , Insulin/biosynthesis , Insulin/genetics , Insulin Resistance/genetics , Insulin Secretion , Neuropeptides , Nuclear Proteins/genetics , Repressor Proteins , Signal Transduction/genetics , Trans-Activators , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...