Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 12(3): e8750, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35356582

ABSTRACT

Crenate broomrape (Orobanche crenata Forsk.) is a serious long-standing parasitic weed problem in Algeria, mainly affecting legumes but also vegetable crops. Unresolved questions for parasitic weeds revolve around the extent to which these plants undergo local adaptation, especially with respect to host specialization, which would be expected to be a strong selective factor for obligate parasitic plants. In the present study, the genotyping-by-sequencing (GBS) approach was used to analyze genetic diversity and population structure of 10 Northern Algerian O. crenata populations with different geographical origins and host species (faba bean, pea, chickpea, carrot, and tomato). In total, 8004 high-quality single-nucleotide polymorphisms (5% missingness) were obtained and used across the study. Genetic diversity and relationships of 95 individuals from 10 populations were studied using model-based ancestry analysis, principal components analysis, discriminant analysis of principal components, and phylogeny approaches. The genetic differentiation (F ST) between pairs of populations was lower between adjacent populations and higher between geographically separated ones, but no support was found for isolation by distance. Further analyses identified four genetic clusters and revealed evidence of structuring among populations and, although confounded with location, among hosts. In the clearest example, O. crenata growing on pea had a SNP profile that was distinct from other host/location combinations. These results illustrate the importance and potential of GBS to reveal the dynamics of parasitic weed dispersal and population structure.

2.
Nat Plants ; 5(9): 991-1001, 2019 09.
Article in English | MEDLINE | ID: mdl-31332314

ABSTRACT

Horizontal gene transfer (HGT), the movement and genomic integration of DNA across species boundaries, is commonly associated with bacteria and other microorganisms, but functional HGT (fHGT) is increasingly being recognized in heterotrophic parasitic plants that obtain their nutrients and water from their host plants through direct haustorial feeding. Here, in the holoparasitic stem parasite Cuscuta, we identify 108 transcribed and probably functional HGT events in Cuscuta campestris and related species, plus 42 additional regions with host-derived transposon, pseudogene and non-coding sequences. Surprisingly, 18 Cuscuta fHGTs were acquired from the same gene families by independent HGT events in Orobanchaceae parasites, and the majority are highly expressed in the haustorial feeding structures in both lineages. Convergent retention and expression of HGT sequences suggests an adaptive role for specific additional genes in parasite biology. Between 16 and 20 of the transcribed HGT events are inferred as ancestral in Cuscuta based on transcriptome sequences from species across the phylogenetic range of the genus, implicating fHGT in the successful radiation of Cuscuta parasites. Genome sequencing of C. campestris supports transfer of genomic DNA-rather than retroprocessed RNA-as the mechanism of fHGT. Many of the C. campestris genes horizontally acquired are also frequent sources of 24-nucleotide small RNAs that are typically associated with RNA-directed DNA methylation. One HGT encoding a leucine-rich repeat protein kinase overlaps with a microRNA that has been shown to regulate host gene expression, suggesting that HGT-derived parasite small RNAs may function in the parasite-host interaction. This study enriches our understanding of HGT by describing a parasite-host system with unprecedented gene exchange that points to convergent evolution of HGT events and the functional importance of horizontally transferred coding and non-coding sequences.


Subject(s)
Cuscuta/genetics , Cuscuta/physiology , Gene Transfer, Horizontal , Nucleic Acids/physiology , Chromosome Mapping , Host-Parasite Interactions
3.
Genes (Basel) ; 9(2)2018 Feb 08.
Article in English | MEDLINE | ID: mdl-29419727

ABSTRACT

Deoxyribonucleic acid (DNA) methylation is an epigenetic alteration crucial for regulating stress responses. Identifying large-scale DNA methylation at single nucleotide resolution is made possible by whole genome bisulfite sequencing. An essential task following the generation of bisulfite sequencing data is to detect differentially methylated cytosines (DMCs) among treatments. Most statistical methods for DMC detection do not consider the dependency of methylation patterns across the genome, thus possibly inflating type I error. Furthermore, small sample sizes and weak methylation effects among different phenotype categories make it difficult for these statistical methods to accurately detect DMCs. To address these issues, the wavelet-based functional mixed model (WFMM) was introduced to detect DMCs. To further examine the performance of WFMM in detecting weak differential methylation events, we used both simulated and empirical data and compare WFMM performance to a popular DMC detection tool methylKit. Analyses of simulated data that replicated the effects of the herbicide glyphosate on DNA methylation in Arabidopsis thaliana show that WFMM results in higher sensitivity and specificity in detecting DMCs compared to methylKit, especially when the methylation differences among phenotype groups are small. Moreover, the performance of WFMM is robust with respect to small sample sizes, making it particularly attractive considering the current high costs of bisulfite sequencing. Analysis of empirical Arabidopsis thaliana data under varying glyphosate dosages, and the analysis of monozygotic (MZ) twins who have different pain sensitivities-both datasets have weak methylation effects of <1%-show that WFMM can identify more relevant DMCs related to the phenotype of interest than methylKit. Differentially methylated regions (DMRs) are genomic regions with different DNA methylation status across biological samples. DMRs and DMCs are essentially the same concepts, with the only difference being how methylation information across the genome is summarized. If methylation levels are determined by grouping neighboring cytosine sites, then they are DMRs; if methylation levels are calculated based on single cytosines, they are DMCs.

4.
Nature ; 553(7686): 82-85, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29300014

ABSTRACT

Dodders (Cuscuta spp.) are obligate parasitic plants that obtain water and nutrients from the stems of host plants via specialized feeding structures called haustoria. Dodder haustoria facilitate bidirectional movement of viruses, proteins and mRNAs between host and parasite, but the functional effects of these movements are not known. Here we show that Cuscuta campestris haustoria accumulate high levels of many novel microRNAs (miRNAs) while parasitizing Arabidopsis thaliana. Many of these miRNAs are 22 nucleotides in length. Plant miRNAs of this length are uncommon, and are associated with amplification of target silencing through secondary short interfering RNA (siRNA) production. Several A. thaliana mRNAs are targeted by 22-nucleotide C. campestris miRNAs during parasitism, resulting in mRNA cleavage, secondary siRNA production, and decreased mRNA accumulation. Hosts with mutations in two of the loci that encode target mRNAs supported significantly higher growth of C. campestris. The same miRNAs that are expressed and active when C. campestris parasitizes A. thaliana are also expressed and active when it infects Nicotiana benthamiana. Homologues of target mRNAs from many other plant species also contain the predicted target sites for the induced C. campestris miRNAs. These data show that C. campestris miRNAs act as trans-species regulators of host-gene expression, and suggest that they may act as virulence factors during parasitism.


Subject(s)
Arabidopsis/genetics , Cuscuta/genetics , Host-Parasite Interactions/genetics , MicroRNAs/metabolism , Nicotiana/genetics , RNA Cleavage , RNA, Messenger/metabolism , RNA, Plant/metabolism , Arabidopsis/parasitology , Base Sequence , Cuscuta/growth & development , Gene Expression Regulation, Plant , Host Specificity , MicroRNAs/genetics , Mutation , RNA, Messenger/genetics , RNA, Plant/genetics , RNA, Small Interfering/biosynthesis , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Nicotiana/parasitology , Virulence Factors/genetics , Virulence Factors/metabolism
5.
Genes (Basel) ; 8(11)2017 Nov 10.
Article in English | MEDLINE | ID: mdl-29125533

ABSTRACT

Contact with poison ivy plants is widely dreaded because they produce a natural product called urushiol that is responsible for allergenic contact delayed-dermatitis symptoms lasting for weeks. For this reason, the catchphrase most associated with poison ivy is "leaves of three, let it be", which serves the purpose of both identification and an appeal for avoidance. Ironically, despite this notoriety, there is a dearth of specific knowledge about nearly all other aspects of poison ivy physiology and ecology. As a means of gaining a more molecular-oriented understanding of poison ivy physiology and ecology, Next Generation DNA sequencing technology was used to develop poison ivy root and leaf RNA-seq transcriptome resources. De novo assembled transcriptomes were analyzed to generate a core set of high quality expressed transcripts present in poison ivy tissue. The predicted protein sequences were evaluated for similarity to SwissProt homologs and InterProScan domains, as well as assigned both GO terms and KEGG annotations. Over 23,000 simple sequence repeats were identified in the transcriptome, and corresponding oligo nucleotide primer pairs were designed. A pan-transcriptome analysis of existing Anacardiaceae transcriptomes revealed conserved and unique transcripts among these species.

6.
PeerJ ; 5: e3560, 2017.
Article in English | MEDLINE | ID: mdl-28740750

ABSTRACT

The emergence of herbicide-resistant weeds is a major threat facing modern agriculture. Over 470 weedy-plant populations have developed resistance to herbicides. Traditional evolutionary mechanisms are not always sufficient to explain the rapidity with which certain weed populations adapt in response to herbicide exposure. Stress-induced epigenetic changes, such as alterations in DNA methylation, are potential additional adaptive mechanisms for herbicide resistance. We performed methylC sequencing of Arabidopsis thaliana leaves that developed after either mock treatment or two different sub-lethal doses of the herbicide glyphosate, the most-used herbicide in the history of agriculture. The herbicide injury resulted in 9,205 differentially methylated regions (DMRs) across the genome. In total, 5,914 of these DMRs were induced in a dose-dependent manner, wherein the methylation levels were positively correlated to the severity of the herbicide injury, suggesting that plants can modulate the magnitude of methylation changes based on the severity of the stress. Of the 3,680 genes associated with glyphosate-induced DMRs, only 7% were also implicated in methylation changes following biotic or salinity stress. These results demonstrate that plants respond to herbicide stress through changes in methylation patterns that are, in general, dose-sensitive and, at least partially, stress-specific.

7.
RNA Biol ; 14(4): 450-455, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28277936

ABSTRACT

The parasitic plant Cuscuta exchanges mRNAs with its hosts. Systemic mobility of mRNAs within plants is well documented, and has gained increasing attention as studies using grafted plant systems have revealed new aspects of mobile mRNA regulation and function. But parasitic plants take this phenomenon to a new level by forming seamless connections to a wide range of host species, and raising questions about how mRNAs might function after transfer to a different species. Cuscuta and other parasitic plant species also take siRNAs from their hosts, indicating that multiple types of RNA are capable of trans-specific movement. Parasitic plants are intriguing systems for studying RNA mobility, in part because such exchange opens new possibilities for control of parasitic weeds, but also because they provide a fresh perspective into understanding roles of RNAs in inter-organismal communication.


Subject(s)
Cuscuta/genetics , Plants/parasitology , RNA, Plant/genetics , Cuscuta/physiology , Gene Expression Regulation, Plant , Host-Parasite Interactions , RNA, Messenger/genetics , RNA, Small Interfering/genetics
8.
Curr Opin Plant Biol ; 26: 20-5, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26051214

ABSTRACT

Cuscuta species (dodders) are parasitic plants that are able to grow on many different host plants and can be destructive to crops. The connections between Cuscuta and its hosts allow movement of not only water and small nutrients, but also macromolecules including mRNA, proteins and viruses. Recent studies show that RNAs move bidirectionally between hosts and parasites and involve a large number of different genes. Although the function of mobile mRNAs has not been demonstrated in this system, small RNAs are also transmitted and a silencing construct expressed in hosts is able to affect expression of the target gene in the parasite. High throughput sequencing of host-parasite associations has the potential to greatly accelerate understanding of this remarkable interaction.


Subject(s)
Cuscuta/genetics , Gene Expression Regulation, Plant , Host-Pathogen Interactions , RNA, Messenger/genetics , RNA, Plant/genetics
9.
Science ; 345(6198): 808-11, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25124438

ABSTRACT

Movement of RNAs between cells of a single plant is well documented, but cross-species RNA transfer is largely unexplored. Cuscuta pentagona (dodder) is a parasitic plant that forms symplastic connections with its hosts and takes up host messenger RNAs (mRNAs). We sequenced transcriptomes of Cuscuta growing on Arabidopsis and tomato hosts to characterize mRNA transfer between species and found that mRNAs move in high numbers and in a bidirectional manner. The mobile transcripts represented thousands of different genes, and nearly half the expressed transcriptome of Arabidopsis was identified in Cuscuta. These findings demonstrate that parasitic plants can exchange large proportions of their transcriptomes with hosts, providing potential mechanisms for RNA-based interactions between species and horizontal gene transfer.


Subject(s)
Arabidopsis/genetics , Cuscuta/genetics , RNA, Messenger/genetics , RNA, Plant/genetics , Solanum lycopersicum/genetics , Transcriptome , Arabidopsis/parasitology , Cuscuta/physiology , DNA, Complementary , Gene Transfer, Horizontal , Genes, Plant , Genome, Plant , Host-Parasite Interactions , Solanum lycopersicum/parasitology , RNA, Messenger/metabolism , RNA, Plant/metabolism
10.
New Phytol ; 200(4): 1225-33, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23914903

ABSTRACT

The cross-species movement of mRNA from hosts to the parasitic plant Cuscuta pentagona has been reported previously, but has not been characterized quantitatively or with attention to uptake patterns and the fate of specific mRNAs. Real-time PCR and RNA-Seq approaches were used to identify and characterize mobile transcripts from tomato and Arabidopsis hosts into C. pentagona. Tomato transcripts of Gibberellic Acid Insensitive (SlGAI) and Cathepsin D Proteinase Inhibitor (SlPI) differed significantly in the rate of uptake into the parasite, but were then distributed over the length of the parasite shoot. When parasite shoots were detached from the hosts, the SlPI transcript concentrations in the parasite showed the greatest decrease within the first 8 h. Arabidopsis transcripts also varied in mobility into the parasite, and assay of specific regions of a Salt-inducible Zinc Finger Protein (AtSZF1) transcript revealed distinct patterns of abundance in the parasite. The uptake and distribution of host mRNAs into C. pentagona appears to vary among mRNAs, and perhaps even with the region of the mRNA under investigation. We propose that mRNAs traffic into the parasite via multiple routes, or that other mechanisms for selective uptake and mobility exist between host and parasite.


Subject(s)
Arabidopsis/genetics , Cuscuta/metabolism , RNA Transport , RNA, Plant/metabolism , Solanum lycopersicum/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant/genetics , Plant Proteins/metabolism , Plant Stems/genetics , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , Sequence Analysis, RNA , Transcriptome/genetics
11.
Front Plant Sci ; 3: 203, 2012.
Article in English | MEDLINE | ID: mdl-22936942

ABSTRACT

RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs, and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host-parasite connections and the potential significance of host RNAs for the parasite. Additional research on host-parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking.

12.
FEBS Lett ; 583(2): 475-80, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-19121310

ABSTRACT

Gibberellins are ent-kaurene-derived diterpenoid phytohormones produced by plants, fungi, and bacteria. The distinct gibberellin biosynthetic pathways in plants and fungi are known, but not that in bacteria. Plants typically use two diterpene synthases to form ent-kaurene, while fungi use only a single bifunctional diterpene synthase. We demonstrate here that Bradyrhizobium japonicum encodes separate ent-copalyl diphosphate and ent-kaurene synthases. These are found in an operon whose enzymatic composition indicates that gibberellin biosynthesis in bacteria represents a third independently assembled pathway relative to plants and fungi. Nevertheless, sequence comparisons also suggest potential homology between diterpene synthases from bacteria, plants, and fungi.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Bradyrhizobium/enzymology , Gibberellins/biosynthesis , Plant Proteins/metabolism , Alkyl and Aryl Transferases/genetics , Amino Acid Sequence , Bradyrhizobium/genetics , Cloning, Molecular , Molecular Sequence Data , Operon , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...