Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 905842, 2022.
Article in English | MEDLINE | ID: mdl-35958208

ABSTRACT

Ionomics, the study of the composition of mineral nutrients and trace elements in organisms that represent the inorganic component of cells and tissues, has been widely studied to explore to unravel the molecular mechanism regulating the elemental composition of plants. However, the genetic factors of rice subspecies in the interaction between arsenic and functional ions have not yet been explained. Here, the correlation between As and eight essential ions in a rice core collection was analyzed, taking into account growing condition and genetic factors. The results demonstrated that the correlation between As and essential ions was affected by genetic factors and growing condition, but it was confirmed that the genetic factor was slightly larger with the heritability for arsenic content at 53%. In particular, the cluster coefficient of japonica (0.428) was larger than that of indica (0.414) in the co-expression network analysis for 23 arsenic genes, and it was confirmed that the distance between genes involved in As induction and detoxification of japonica was far than that of indica. These findings provide evidence that japonica populations could accumulate more As than indica populations. In addition, the cis-eQTLs of AIR2 (arsenic-induced RING finger protein) were isolated through transcriptome-wide association studies, and it was confirmed that AIR2 expression levels of indica were lower than those of japonica. This was consistent with the functional haplotype results for the genome sequence of AIR2, and finally, eight rice varieties with low AIR2 expression and arsenic content were selected. In addition, As-related QTLs were identified on chromosomes 5 and 6 under flooded and intermittently flooded conditions through genome-scale profiling. Taken together, these results might assist in developing markers and breeding plans to reduce toxic element content and breeding high-quality rice varieties in future.

2.
Polymers (Basel) ; 12(10)2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33076526

ABSTRACT

Bioink based 3D bioprinting is a promising new technology that enables fabrication of complex tissue structures with living cells. The printability of the bioink depends on the physical properties such as viscosity. However, the high viscosity bioink puts shear stress on the cells and low viscosity bioink cannot maintain complex tissue structure firmly after the printing. In this work, we applied dual crosslinkable bioink using Kappa-carrageenan (κ-CA) to overcome existing shortcomings. κ-CA has properties such as biocompatibility, biodegradability, shear-thinning and ionic gelation but the difficulty of controlling gelation properties makes it unsuitable for application in 3D bioprinting. This problem was solved by synthesizing methacrylated Kappa-carrageenan (MA-κ-CA), which can be dual crosslinked through ionic and UV (Ultraviolet) crosslinking to form hydrogel using NIH-3T3 cells. Through MA substitutions, the rheological properties of the gel could be controlled to reduce the shear stress. Moreover, bioprinting using the cell-laden MA-κ-CA showed cell compatibility with enhanced shape retention capability. The potential to control the physical properties through dual crosslinking of MA-κ-CA hydrogel is expected to be widely applied in 3D bioprinting applications.

3.
Rice (N Y) ; 12(1): 84, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31754895

ABSTRACT

BACKGROUND: Rice is a major food resource for Asian countries including Korea. However, most Asian countries are facing food safety problems due to cropland contamination by heavy metals. Thus, this study was conducted to investigate genetic factors affecting the expression of cadmium (Cd) gene, and to confirm differences in Cd translocation among cultivars because the current molecular understanding of Cd uptake-transport mechanisms remains insufficient. Associations between genotypes and gene expression level of Cd-related genes such as NRAMP, MTP, and HMA gene families in the rice core collection were analyzed at the genomic level. RESULTS: Os01g0956700, Os05g0128400 and Os11g0485200 showed strong associations between expression level and genotype in the rice core collection, the regulatory factors that associated with these genes in cis and trans were founded. The association between the expression level and genotype of the candidate gene (Os01g0611300: metal tolerance protein) predicted to affect Cd content in rice by a previous genome-wide association study (GWAS) was also analyzed. Furthermore, as a result of the phylogeny and haplotype analyses of the candidate gene, high-Cd tolerance cultivars were selected. The correlations between Cd and other inorganic components (Mg, Mn, Fe, Cu and Zn) in the roots, stems, leaves and unpolished grain of selected rice cultivars were analyzed. CONCLUSION: Therefore, these results may be useful for understanding the uptake-transport mechanisms of Cd and other inorganic components via molecular genetics and may help rice breeders develop new low-Cd cultivars in the near future.

4.
Mar Drugs ; 16(12)2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30518062

ABSTRACT

Biologically active materials from marine sources have been receiving increasing attention as they are free from the transmissible diseases and religious restrictions associated with the use of mammalian resources. Among various other biomaterials from marine sources, alginate and fish gelatin (f-gelatin), with their inherent bioactivity and physicochemical tunability, have been studied extensively and applied in various biomedical fields such as regenerative medicine, tissue engineering, and pharmaceutical products. In this study, by using alginate and f-gelatin's chemical derivatives, we developed a marine-based interpenetrating polymer network (IPN) hydrogel consisting of alginate and f-gelatin methacryloyl (f-GelMA) networks via physical and chemical crosslinking methods, respectively. We then evaluated their physical properties (mechanical strength, swelling degree, and degradation rate) and cell behavior in hydrogels. Our results showed that the alginate/f-GelMA hydrogel displayed unique physical properties compared to when alginate and f-GelMA were used separately. These properties included high mechanical strength, low swelling and degradation rate, and an increase in cell adhesive ability. Moreover, for the first time, we introduced and optimized the application of alginate/f-GelMA hydrogel in a three-dimensional (3D) bioprinting system with high cell viability, which breaks the restriction of their utilization in tissue engineering applications and suggests that alginate/f-GelMA can be utilized as a novel bioink to broaden the uses of marine products in biomedical fields.


Subject(s)
Biological Products/chemistry , Bioprinting/methods , Hydrogels/chemistry , Printing, Three-Dimensional , Tissue Engineering/methods , Alginates/chemistry , Cell Survival , Cross-Linking Reagents/chemistry , Fish Proteins/chemistry , Gelatin/chemistry , Methacrylates/chemistry , Stress, Mechanical , Tissue Scaffolds/chemistry
5.
Int J Mol Sci ; 19(2)2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29470444

ABSTRACT

Abstract: Citrons have been widely used for medicinal purposes for a long time, but the application of citron in the food industry is still restricted. The extensive advantages of nanotechnology in the food industry have greatly broadened the application of foods. In this study, by employing nanotechnology, we prepared citron-extract nanoparticle with an average size of 174.11 ± 3.89 nm, containing protein peptide and/or liposome. In order to evaluate the toxicity of nanoparticles and to ensure food safety, biological cytotoxicity at the cell and genomic levels was also identified to examine the toxicity of citron extracts by using an in vitro system. Our results demonstrated that the cytotoxicity of citronliposome was dependent on cell type in high concentrations (1 and 5 mg/mL), selectively against primary human cardiac progenitor cells (hCPCs), and human endothelial progenitor cells (hEPCs) in MTT and lactate dehydrogenase (LDH) assays. Interestingly, for the NIH-3T3 and H9C2 cell lines, cell cytotoxicity was observed with slight genotoxicity, especially from citronpeptide extract for both cell lines. Taken together, our study provides cytotoxicity data on nanoengineered citron extracts according to different cell type as is crucial for further applications.


Subject(s)
Citrus/chemistry , Liposomes/chemistry , Peptides/pharmacology , Plant Extracts/pharmacology , Animals , Cell Death/drug effects , Cell Line , Cell Survival/drug effects , Comet Assay , Humans , L-Lactate Dehydrogenase/metabolism , Mice , Mutagens/toxicity , Nanoparticles
6.
Int J Mol Sci ; 19(1)2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29342111

ABSTRACT

To overcome the drawbacks of conventional drug delivery system, nanoemulsion have been developed as an advanced form for improving the delivery of active ingredients. However, safety evaluation is crucial during the development stage before the commercialization. Therefore, the aim of this study was to evaluate the cytotoxicity of two types of newly developed nanoemulsions. Turmeric extract-loaded nanoemulsion powder-10.6 (TE-NEP-10.6, high content of artificial surfactant Tween 80), which forms the optimal nanoemulsion, and the TE-NEP-8.6 made by increasing the content of natural emulsifier (lecithin) to reduce the potential toxicity of nanoemulsion were cultured with various cells (NIH3T3, H9C2, HepG2, hCPC, and hEPC) and the changes of each cell were observed followed by nanoemulsion treatment. As a result, the two nanoemulsions (TE-NEP-10.6 and TE-NEP-8.6) did not show significant difference in cell viability. In the case of cell line (NIH3T3, H9C2, and HepG2), toxicity was not observed at an experimental concentration of less than 1 mg/mL, however, the cell survival rate decreased in a concentration dependent manner in the case of primary cultured cells. These results from our study can be used as a basic data to confirm the cell type dependent toxicity of nanoemulsion.


Subject(s)
Curcuma/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Oils/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Water/chemistry , Animals , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Delivery Systems , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...