Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Lab Chip ; 24(2): 272-280, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38086678

ABSTRACT

A cell chip is a microfluidic cell culture device fabricated using microchip manufacturing methods for culturing living cells in a micrometer-sized chamber to model the physiological functions of tissues and organs. It has been extensively investigated in the domain of drug transport and toxicity research. Herein, we developed a cell chip for real-time monitoring of drug release from drug carriers. The proposed system integrates three core functions: cell culture, real-time analysis, and drug delivery tests. This device was designed to be loaded with microparticles for drug release and to enable real-time drug measurement. The efficacy of the developed system was evaluated by measuring the concentration of drugs released from the microparticles prepared with poly(lactic-co-glycolic acid) (PLGA). Doxorubicin, an anticancer drug, was used as a model drug and A549 cells, a type of lung cancer cell, were simultaneously cultured to compare the drug release concentrations in the presence of cells. Furthermore, variations in cell viability with respect to the presence of drug-loaded microparticles were observed and analyzed. Notably, as the proposed system requires an extremely small number of microparticles, it affords simple implementation in a single device, thereby eliminating the need for complex accessories and instruments for analysis. Thus, the analysis process becomes more convenient and cost-efficient. Thus, the proposed method offers an easy analysis of the release behavior of various cells and drugs. The simplicity and low cost of this innovative system without sacrificing analytical precision demonstrate its potential for applications across various fields.


Subject(s)
Lactic Acid , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Drug Liberation , Drug Delivery Systems , Drug Carriers , Microspheres , Particle Size
2.
Small ; 20(14): e2306324, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37990401

ABSTRACT

Although the personal protective equipment (PPE) used by healthcare workers (HCWs) effectively blocks hazardous substances and pathogens, it does not fully rule out the possibility of infection, as pathogens surviving on the fabric surface pose a substantial risk of cross-infection through unintended means. Therefore, PPE materials that exhibit effective biocidal activity while minimizing contamination by viscous body fluids (e.g., blood and saliva) and pathogen-laden droplets are highly sought. In this study, petal-like nanostructures (PNSs) are synthesized through the vertical rearrangement of colloidal lamellar bilayers via evaporation-induced self-assembly of octadecylamine, silica-alumina sol, and diverse photosensitizer. The developed method is compatible with various fabrics and imparts visible-light-activated antimicrobial and superhydrophobic-based antifouling activities. PNS-coated fabrics could provide a high level of protection and effectively block pathogen transmission as exemplified by their ability to roll off viscous body fluids reducing bacterial droplet adhesion and to inactivate various microorganisms. The combination of antifouling and photobiocidal activities results in the complete inactivation of sprayed pathogen-laden droplets within 30 min. Thus, this study paves the way for effective contagious disease management and the protection of HCWs in general medical environments, inspiring further research on the fabrication of materials that integrate multiple useful functionalities.


Subject(s)
Anti-Infective Agents , Biofouling , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Personal Protective Equipment , Health Personnel , Anti-Infective Agents/pharmacology
3.
Sensors (Basel) ; 23(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36679434

ABSTRACT

Laboratory-scale data on a component level are frequently used for prognostics because acquiring them is time and cost efficient. However, they do not reflect actual field conditions. As prognostics is for an in-service system, the developed prognostic methods must be validated using real operational data obtained from an actual system. Because obtaining real operational data is much more expensive than obtaining test-level data, studies employing field data are scarce. In this study, a prognostic method for screws was presented by employing multi-source real operational data obtained from a micro-extrusion system. The analysis of real operational data is more challenging than that of test-level data because the mutual effect of each component in the system is chaotically reflected in the former. This paper presents a degradation feature extraction method for interpreting complex signals for a real extrusion system based on the physical and mechanical properties of the system as well as operational data. The data were analyzed based on general physical properties and the inferred interpretation was verified using the data. The extracted feature exhibits valid degradation behavior and is used to predict the remaining useful life of the screw in a real extrusion system.


Subject(s)
Bone Screws , Prognosis
4.
Pharmaceutics ; 14(11)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36365163

ABSTRACT

In this study, we present an in situ microfluidic system to precisely control highly porous polycaprolactone microspheres as tissue templates for tissue engineering. The porosity of the microspheres was controlled by adjusting the flow rates of the polymer phase and the pore-generating material phase in the dispersed phase. The microfluidic flow-focusing technique was adopted to manufacture porous microspheres using a relatively highly viscous polymer solution, and the device was fabricated by conventional photolithography and PDMS casting. The fabricated in situ microfluidic system was used to precisely control the pore size of monodispersed polycaprolactone microspheres. The porous microspheres with controlled pore sizes were evaluated by culturing HDF cells on the surface of porous microspheres and injection into the subcutaneous tissue of rats. We found that the increased pore size of the microspheres improved the initial proliferation rate of HDF cells after seeding and relieved the inflammatory response after the implantation of porous microspheres in the subcutaneous tissue of rats.

5.
Bioresour Technol ; 348: 126794, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35149180

ABSTRACT

A deep learning-based method for optimizing a membraneless microfluidic fuel cell (MMFC)performance by combining the artificial neural network (ANN) and genetic algorithm (GA) was for the first time introduced. A three-dimensional multiphysics model that had an accuracy equivalent to experimental results (R2 = 0.976) was employed to generate the ANN's training data. The constructed ANN is equivalent to the simulation (R2 = 0.999) but with far better computation resource efficiency as the ANN's execution time is only 0.041 s. The ANN model is then used by the GA to determine the inputs (microchannel length = 10.040 mm, width = 0.501 mm, height = 0.635 mm; temperature = 288.210 K, cell voltage = 0.309 V) that lead to the maximum power density of 0.263 mWcm-2 (current density of 0.852 mAcm-2) of the MMFC. The ANN-GA and numerically calculated maximum power densities differed only by 0.766%.


Subject(s)
Deep Learning , Microfluidics , Computer Simulation , Neural Networks, Computer , Temperature
6.
Polymers (Basel) ; 13(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923547

ABSTRACT

The tip and die for manufacturing multi-lumen catheter tubes should be designed considering the flow velocity of the molten polymer and the deformation of the final extruded tube. In this study, to manufacture non-circular double-lumen tubes for peripherally inserted central catheters (PICCs), three types of tip and die structures are proposed. The velocity field and swelling effect when the circular tip and die (CTD) are applied, which is the commonly used tip and die structure, are analyzed through numerical calculation. To resolve the wall and rib thickness and ovality issues, the ellipse tip and die (ETD) and sub-path tip and die (STD) were proposed. In addition, based on the results of numerical analysis, the tip and die structures were manufactured and used to perform extrusion. Finally, we manufactured tubes that satisfied the target diameter, ovality, wall, and rib thickness using the newly proposed STD.

7.
Sensors (Basel) ; 21(2)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430443

ABSTRACT

We developed an integrated PCR system that performs automated sample preparation and fast polymerase chain reaction (PCR) for application in point-of care (POC) testing. This system is assembled from inexpensive 3D-printing parts, off-the-shelf electronics and motors. Molecular detection requires a series of procedures including sample preparation, amplification, and fluorescence intensity analysis. The system can perform automated DNA sample preparation (extraction, separation and purification) in ≤5 min. The variance of the automated sample preparation was clearly lower than that achieved using manual DNA extraction. Fast thermal ramp cycles were generated by a customized thermocycler designed to automatically transport samples between heating and cooling blocks. Despite the large sample volume (50 µL), rapid two-step PCR amplification completed 40 cycles in ≤13.8 min. Variations in fluorescence intensity were measured by analyzing fluorescence images. As proof of concept of this system, we demonstrated the rapid DNA detection of pathogenic bacteria. We also compared the sensitivity of this system with that of a commercial device during the automated extraction and fast PCR of Salmonella bacteria.


Subject(s)
Bacterial Infections , Point-of-Care Systems , Bacteria/genetics , DNA , Humans , Polymerase Chain Reaction
8.
Micromachines (Basel) ; 11(11)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142730

ABSTRACT

A soundwave is transmitted by adjacent molecules in the medium, and depending on the type of sound, it exhibits various characteristics such as frequency, sound pressure, etc. If the acoustic wavelength of the soundwave is sufficiently long compared with the size of an acoustic element, physical analysis within the sound element could be simplified regardless of the shape of the acoustic element: this is called "long wavelength approximation". A Helmholtz resonator, a representative acoustic element which satisfies the "long wavelength theory", consists of a neck part and a cavity part. The Helmholtz resonators can absorb certain frequencies of sound through resonance. To exhibit attenuation properties at ultrasound range, the Helmholtz resonator should be made into a microscale since Helmholtz resonators should satisfy the "long wavelength approximation". In this study, Helmholtz resonator inspired acoustic elements were fabricated using MEMS technology, and acoustic attenuation experiments in a water bath were conducted using various shapes and materials. As a result, the fabricated samples showed admirable attenuation properties up to ~13 dB mm-1 at 1 MHz. The results were analyzed to derive the necessary conditions for the fabrication of acoustic elements with acoustic attenuation properties in ultrasound range.

9.
Pharmaceutics ; 12(7)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32629825

ABSTRACT

A closed-loop system imitating the function of pancreatic cells, connected to microneedles (MNs) that automatically "release" insulin in response to the blood glucose (BG) levels would be highly satisfactory for improving the quality of life and health for diabetes patients. This paper describes an easy, fast and simple technique of coating a porous polymer layer on stainless steel (SS) MNs that release insulin in a glucose-responsive fashion. It was fabricated by sealing insulin, sodium bicarbonate (a pH-sensitive element [NaHCOз]) and glucose oxidase (glucose-specific enzymes [GOx]) into the pores of a porous polymer coating. Glucose can passively diffuse into the pores and become oxidized to gluconic acid by GOx, thereby causing a decrease in local pH. The subsequent reaction of protons with NaHCOз forms carbon dioxide (CO2) which creates pressure inside the pores, thereby rupturing the thin polymer film and releasing the encapsulated insulin. Field emission scanning electron microscopy (FE-SEM) images displayed that upon the exposure of MNs to glucose-free phosphate buffer saline (PBS) with pH 7.4, the pores of the porous MNs were closed, while in MNs exposed to a hyperglycemic glucose level, the pores were opened and the thin film burst. These MNs demonstrated both in vitro (in porcine skin and PBS) and in vivo (in diabetic rats) glucose-mediated insulin release under hyperglycemic conditions with rapid responsiveness. This study validated that the release of insulin from porous MNs was effectively correlated with glucose concentration.

10.
Polymers (Basel) ; 12(4)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32244738

ABSTRACT

We present a 512-channel geometric droplet-splitting microfluidic device that involves the injection of a premixed emulsion for microsphere production. The presented microfluidic device was fabricated using conventional photolithography and polydimethylsiloxane casting. The fabricated microfluidic device consisted of 512 channels with 256 T-junctions in the last branch. Five hundred and twelve microdroplets with a narrow size distribution were produced from a single liquid droplet. The diameter and size distribution of prepared micro water droplets were 35.29 µm and 8.8% at 10 mL/h, respectively. Moreover, we attempted to prepare biocompatible microspheres for demonstrating the presented approach. The diameter and size distribution of the prepared poly (lactic-co-glycolic acid) microspheres were 6.56 µm and 8.66% at 10 mL/h, respectively. To improve the monodispersity of the microspheres, we designed an additional post array part in the 512-channel geometric droplet-splitting microfluidic device. The monodispersity of the microdroplets prepared with the microfluidic device combined with the post array part exhibited a significant improvement.

11.
Micromachines (Basel) ; 11(12)2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33419328

ABSTRACT

In this article, we describe an enzyme-based, membraneless, microfluidic biofuel cell for the continuous determination of glucose using electrochemical power generation as a transducing signal. Enzymes were immobilized on multi-walled carbon nanotube (MWCNT) electrodes placed parallel to the co-laminar flow in a Y-shaped microchannel. The microchannel was produced with polydimethylsiloxane (PDMS) using soft lithography, while the MWCNT electrodes were replicated via a PDMS stencil on indium tin oxide (ITO) glass. Moreover, the electrodes were modified with glucose oxidase and laccase by direct covalent bonding. The device was studied at different MWCNT deposition amounts and electrolyte flow rates to achieve optimum settings. The experimental results demonstrated that glucose could be determined linearly up to a concentration of 4 mM at a sensitivity of 31 mV∙mM-1cm-2.

12.
Polymers (Basel) ; 11(11)2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703443

ABSTRACT

: This work demonstrates a simple approach for coating a porous polymer layer on stainless-steel (SS) microneedles characterized by a pH-responsive formulation for self-regulated drug delivery. For many drug-delivery applications, the release of therapeutic agents in an acidic microenvironment is desirable. Acid-sensitive polymers and hydrogels were extensively explored, but easily prepared polymeric microcarriers that combine acid sensitivity and biodegradability are rare. Here, we describe a simple and robust method of coating a porous polymer layer on SS microneedles (MNs) that release a model drug (lidocaine) in a pH-responsive fashion. It was constructed by packing the model drug and a pH-sensitive component (sodium bicarbonate) into the pores of the polymer layer. When this acid-sensitive formulation was exposed to the acidic microenvironment, the consequent reaction of protons (H+) with sodium bicarbonate (NaHCO3) yielded CO2. This effect generated pressure inside the pores of the coating and ruptured the thin polymer membrane, thereby releasing the encapsulated drug. Scanning electron micrographs showed that the pH-sensitive porous polymer-coated MNs exposed to phosphate-buffered saline (PBS) at pH 7.4 were characterized by closed pores. However, MNs exposed to PBS at pH 5.5 consisted of open pores and the thin membrane burst. The in vitro studies demonstrated the pH sensitivity of the drug release from porous polymer-coated MNs. Negligible release was observed for MNs in receiving media at pH 7.4. In contrast, significant release occurred when the MNs were exposed to acidic conditions (pH 5.5). Additionally, comparable results were obtained for drug release in vitro in porcine skin and in PBS. This revealed that our developed pH-responsive porous polymer-coated MNs could potentially be used for the controlled release of drug formulations in an acidic environment. Moreover, the stimuli-responsive drug carriers will enable on-demand controlled release profiles that may enhance therapeutic effectiveness and reduce systemic toxicity.

13.
Micromachines (Basel) ; 10(10)2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31635350

ABSTRACT

We present a 512-microchannel geometrical passive breakup device for the mass production of microdroplets. The mass production is achieved through the passive breakup of a droplet into two droplets. The microchannel geometry in the microfluidic device was designed and optimized by focusing on stable droplet splitting for microdroplet preparation and minimizing the hydraulic resistance of the microchannel for achieving high throughput; the minimization of hydraulic resistance was achieved by employing analytical approaches. A total of 512 microdroplets could be prepared from a single liquid plug by making the liquid plug pass through nine sequential T-junctions in the microfluidic device, which led to the splitting of droplets. The microfluidic device was fabricated using conventional photolithography and polydimethylsiloxane (PDMS) casting. We estimated the performance of the microfluidic device in terms of the size distribution and production rate of microdroplets. Microdroplets with a diameter of 40.0 ± 2.2 µm were prepared with a narrow size distribution (coefficient of variation (CV) < 5.5%) for flow rates of disperse (Qd) and continuous phase (Qc) of 2 and 3 mL/h, respectively. Microdroplet production rates were measured using a high-speed camera. Furthermore, monodisperse microdroplets were prepared at 42.7 kHz for Qd and Qc of 7 and 15 mL/h, respectively. Finally, the feasibility of the fabricated microfluidic device was verified by using it to prepare biodegradable chitosan microspheres.

14.
Micromachines (Basel) ; 9(10)2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30424415

ABSTRACT

With increasing interest in induced pluripotent stem cells (iPSCs) in the field of stem cell research, highly efficient infection of somatic cells with virus factors is gaining importance. This paper presents a method of employing microfluidic devices for dynamic cell culture and virus infection in a microchannel. The closed space in the microchannel provided a better environment for viruses to diffuse and contact cell surfaces to infect cells. The microfluidic devices were fabricated by photolithography and soft lithography. NIH/3T3 fibroblast cells were cultured in the microfluidic device in static and dynamic conditions and compared with the conventional culture method of using Petri dishes. Virus infection was evaluated using an enhanced green fluorescent protein virus as a model. Dynamic culture in the microchannel showed similar growth of cells to that in Petri dish culture, but the virus infection efficiency was four-times higher. The proposed dynamic culture system could be useful in iPSC research by providing efficient virus infection tools.

15.
R Soc Open Sci ; 5(4): 171609, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29765638

ABSTRACT

We present a simple method to coat microneedles (MNs) uniformly with a porous polymer (PLGA) that can deliver drugs at high rates. Stainless steel (SS) MNs of high mechanical strength were coated with a thin porous polymer layer to enhance their delivery rates. Additionally, to improve the interfacial adhesion between the polymer and MNs, the MN surface was modified by plasma treatment followed by dip coating with polyethyleneimine, a polymer with repeating amine units. The average failure load (the minimum force sufficient for detaching the polymer layer from the surface of SS) recorded for the modified surface coating was 25 N, whereas it was 2.2 N for the non-modified surface. Calcein dye was successfully delivered into porcine skin to a depth of 750 µm by the porous polymer-coated MNs, demonstrating that the developed MNs can pierce skin easily without deformation of MNs; additional skin penetration tests confirmed this finding. For visual comparison, rhodamine B dye was delivered using porous-coated and non-coated MNs in gelatin gel which showed that delivery with porous-coated MNs penetrate deeper when compared with non-coated MNs. Finally, lidocaine and rhodamine B dye were delivered in phosphate-buffered saline (PBS) medium by porous polymer-coated and non-coated MNs. For rhodamine B, drug delivery with the porous-coated MNs was five times higher than that with the non-coated MNs, whereas 25 times more lidocaine was delivered by the porous-coated MNs compared with the non-coated MNs.

16.
BMB Rep ; 50(8): 417-422, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28712386

ABSTRACT

Cisplatin is the most effective and widely used chemotherapeutic agent for many types of cancer. Unfortunately, its clinical use is limited by its adverse effects, notably bone marrow suppression leading to abnormal hematopoiesis. We previously revealed that neuropeptide Y (NPY) is responsible for the maintenance of hematopoietic stem cell (HSC) function by protecting the sympathetic nervous system (SNS) fibers survival from chemotherapy-induced bone marrow impairment. Here, we show the NPY-mediated protective effect against bone marrow dysfunction due to cisplatin in an ovarian cancer mouse model. During chemotherapy, NPY mitigates reduction in HSC abundance and destruction of SNS fibers in the bone marrow without blocking the anticancer efficacy of cisplatin, and it results in the restoration of blood cells and amelioration of sensory neuropathy. Therefore, these results suggest that NPY can be used as a potentially effective agent to improve bone marrow dysfunction during cisplatinbased cancer therapy. [BMB Reports 2017; 50(8): 417-422].


Subject(s)
Bone Marrow Cells/drug effects , Cisplatin/pharmacology , Neuropeptide Y/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Animals , Antineoplastic Agents/pharmacology , Bone Marrow/drug effects , Bone Marrow/metabolism , Bone Marrow Cells/physiology , Female , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Heterografts , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Ovarian Neoplasms/pathology , Random Allocation , Receptors, Neuropeptide Y/metabolism
17.
J Nanosci Nanotechnol ; 16(6): 6294-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27427705

ABSTRACT

We present a parallel microfluidic array chip for the fast preparation of microdroplets to provide droplet arrays of a sample using the hydrodynamics of immiscible fluids as they flow in a microchamber and bypass channel. The microfluidic chip has eight channels that are parallel from the inlet to the outlet of the device. Each channel has 13 microchambers and bypass channels to trap the droplets from the sample plugs. Because samples can be arrayed simultaneously in eight parallel channels, the arrays of sample droplets can form quickly. After filling the microchannel and chambers with the sample, oil is injected into the device. As the oil fills the microchannel, owing to the difference in the flow resistance between the microchamber and bypass channel, the oil flows through the bypass channel, trapping the sample in the microchamber. A total of 104 microdroplets of an aqueous sample could be successfully trapped in 8 x 13 arrays of microchambers using one simple injection of sequential plugs of mineral oil, the aqueous sample, and mineral oil with surfactant. Sample droplets were successfully formed at all chambers at flow rates of less than 0.06 mL/h, and a trapping efficiency of greater than 90% was achieved at 0.15 mL/h.

18.
J Biomed Nanotechnol ; 12(2): 366-70, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27305770

ABSTRACT

A method for fabrication of polydimethylsiloxane (PDMS) microstencils was developed and its application to localized culture of human bone marrow mesenchymal stem cells (hMSCs) was tested. Unlike conventional culture methods, which culture cells on an entire surface, microscale cell culture provides precise control of the size and shape of stem cell patterns, and minimizes consumption of cells and culture media. A PDMS microstencil was fabricated by PDMS casting using an SU-8 mold prepared by photolithography. A pattern of 500-µm dots was tested. For the test, a PDMS microstencil was placed on a glass disk and cells were seeded on the stencil at a density of 5 x 104 cells/cm². The hMSCs were cultured for 2 days at 37 °C in a humidified 5% CO2 atmosphere. The PDMS microstencil was removed after 2 days and the hMSC patterns were inspected under a microscope. The results confirmed that stem cells can be cultured using a PDMS microstencil. The micropatterned hMSCs retained their ability to differentiate into osteogenic and adipogenic cells. Thus, using a PDMS microstencil, stem cells can be cultured and differentiated in micropatterns in a precisely controlled manner, in any shape and size, for research and bioengineering applications.


Subject(s)
Bone Marrow Cells/cytology , Cell Culture Techniques/methods , Cell Differentiation , Dimethylpolysiloxanes/chemistry , Mesenchymal Stem Cells/cytology , Microtechnology/instrumentation , Microtechnology/methods , Cell Survival , Cells, Cultured , Humans , In Situ Nick-End Labeling , Microscopy, Electron, Scanning
19.
Tissue Eng Regen Med ; 13(6): 691-700, 2016 Dec.
Article in English | MEDLINE | ID: mdl-30603450

ABSTRACT

Reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) enables the possibility of generating patient-specific cells. However, the low efficiency issue associated with iPSCs generation has limited iPSCs usage in research and clinical applications. In this study, we developed a high efficiency system to generate iPSCs by using a polydimethylsiloxane stencil. This device could be applied to the localization and reprogramming of human fibroblasts. Herein, a well-defined culture system based on a stencil, which supported efficient reprogramming of fibroblasts into iPSCs with 2-4 fold increase in efficacy over conventional methods, is presented. Subsequently, we prepared a multiple analysis system, which used a micro-patterned scissile microarray to characterize iPSCs. The results showed that iPSCs could be cultured into micro-patterns in a precisely controlled manner on the scissile poly(ethylene terephthalate) sheet, which was cut into pieces for subsequent analyses, indicating that this method allows multiple analyses to establish iPSC pluripotency in the same sample. Our approach provides a simple, cost-effective, but highly efficient system for the generation and characterization of iPSCs, and will serve as a powerful tool for establishing patient- and disease-specific pluripotent stem cells. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available for this article at 10.1007/s13770-016-0015-0 and is accessible for authorized users.

20.
J Nanosci Nanotechnol ; 15(10): 7860-5, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26726429

ABSTRACT

Environmentally friendly microstructure molds with montmorillonite (MMT) or multi-walled carbon nanotube (MWCNT) reinforced polyethylene glycol diacrylate (PEGDA) nanocomposites have been prepared for miniaturized device applications. The micropatterning of MMT/PEGDA and MWCNT/PEGDA with 0.5 to 2.0 wt% of MMTs and MWCNTs was achieved through a UV curing process with micro-patterned masks. Hexagonal dot arrays and complex patterns for microstructures of the nanocomposites were produced and characterized with an optical microscope; their thermal properties were studied by thermogravimetric analysis (TGA). The TGA results showed that these nanocomposites were thermally stable up to 350 °C. Polydimethylsiloxane thin replicas with different microstructures were prepared by a casting method using the microstructured nanocomposites as molds. It is considered that these microstructure molds of the nanocomposites can be used as microchip molds to fabricate nanobio-chips and medical diagnostic chip devices.


Subject(s)
Bentonite/chemistry , Micro-Electrical-Mechanical Systems , Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Polyethylene Glycols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...