Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.634
Filter
1.
Clin Orthop Surg ; 16(3): 506-516, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38827756

ABSTRACT

Background: The gait analysis method that has been used in clinical practice to date is an optical tracking system (OTS) using a marker, but a markerless gait analysis (MGA) system is being developed because of the expensive cost and complicated examination of the OTS. To apply this MGA clinically, a comparative study of the MGA and OTS methods is necessary. The purpose of this study was to evaluate the compatibility between the OTS and the MGA methods and to evaluate the usefulness of the MGA system in actual clinical settings. Methods: From March 2021 to August 2021, 14 patients underwent gait analysis using the OTS and MGA system, and the spatiotemporal parameters and kinematic results obtained by the 2 methods were compared. To evaluate the practicality of the MGA system in an actual clinical setting, MGA was performed on 14 symptomatic children with idiopathic toe walking, who had been treated with a corrective cast, and the pre-cast and post-cast results were compared. For the OTS, the Motion Analysis Eagle system was used, and for MGA, DH Walk was used. Results: The spatiotemporal parameters showed no significant difference between the OTS and MGA system. The joint angle graphs of the kinematics along the sagittal plane showed similar shapes as a whole, with particularly high correlations in the hip and knee (pelvis: 29.4%, hip joint: 96.7%, knee joint: 94.9%, and ankle joint: 68.5%). A quantified comparison using the CORrelation and Analysis (CORA) score also showed high similarity between the 2 methods. The MGA results of pre-cast application and post-cast removal for children with idiopathic toe walking showed a statistically significant improvement in ankle dorsiflexion after treatment (p < 0.001). Conclusions: MGA showed a good correlation with the conventional OTS in terms of spatiotemporal parameters and kinematics. We demonstrated that ankle sagittal kinematics improved after treatment by corrective cast in children with idiopathic toe walking using the MGA method. Thus, after the improvement of a few limitations, the MGA system may soon be able to be clinically applied.


Subject(s)
Feasibility Studies , Gait Analysis , Humans , Gait Analysis/methods , Child , Male , Female , Biomechanical Phenomena , Adolescent , Gait/physiology , Child, Preschool
2.
Sci Rep ; 14(1): 13845, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879675

ABSTRACT

Knowing the mean age at diagnosis of breast cancer (BC) in a country is important for setting up an efficient BC screening program. The aim of this study was to develop and validate a model to predict the mean age at diagnosis of BC at the country level. To develop the model, we used the CI5plus database from the IARC, which contains incidence data for 122 selected populations for a minimum of 15 consecutive years from 1993 to 2012 and data from the World Bank. The standard model was fitted with a generalized linear model with the age of the population, growth domestic product per capita (GDPPC) and fertility rate as fixed effects and continent as a random effect. The model was validated in registries of the Cancer Incidence in Five Continents that are not included in the CI5plus database (1st validation set: 1950-2012) and in the most recently released volume (2nd validation set: 2013-2017). The intercept of the model was 30.9 (27.8-34.1), and the regression coefficients for population age, GDPPC and fertility rate were 0.55 (95% CI: 0.53-0.58, p < 0.001), 0.46 (95% CI: 0.26-0.67, p < 0.001) and 1.62 (95% CI: 1.42-1.88, p < 0.001), respectively. The marginal R2 and conditional R2 were 0.22 and 0.81, respectively, suggesting that 81% percent of the variance in the mean age at diagnosis of BC was explained by the variance in population age, GDPPC and fertility rate through linear relationships. The model was highly accurate, as the correlations between the predicted age from the model and the observed mean age at diagnosis of BC were 0.64 and 0.89, respectively, and the mean relative error percentage errors were 5.2 and 3.1% for the 1st and 2nd validation sets, respectively. We developed a robust model based on population age and continent to predict the mean age at diagnosis of BC in populations. This tool could be used to implement BC screening in countries without prevention programs.


Subject(s)
Breast Neoplasms , Humans , Breast Neoplasms/diagnosis , Breast Neoplasms/epidemiology , Female , Middle Aged , Adult , Aged , Incidence , Age Factors , Global Health , Early Detection of Cancer/methods , Registries , Databases, Factual , Aged, 80 and over
3.
Reg Anesth Pain Med ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866559

ABSTRACT

BACKGROUND: Patients with hip fracture often experience severe pain, particularly during movement or slight positional change, prior to the occurrence of surgery. It is essential to explore the appropriate analgesic methods before surgery in patients with hip fracture, especially those capable of alleviating dynamic pain. Pericapsular nerve group (PENG) block was introduced as a useful technique for hip analgesia. In this study, we aimed to compare the reduction in dynamic pain between the PENG block and supra-inguinal fascia iliaca compartment block (SIFICB). METHODS: This prospective trial included 80 hip fracture patients aged ≥19 years, with an American Society of Anesthesiologists Physical Status of 1-4 and a baseline dynamic pain score ≥4 on the numerical rating scale. The patients were randomly allocated into the PENG block (n=40) and SIFICB group (n=40). For the PENG block and SIFICB, 20 mL and 30 mL of 0.3% ropivacaine was used, respectively. The primary outcome was reduction in dynamic pain scores at 30 min following the peripheral nerve block. Dynamic pain score was evaluated when the leg was passively raised. RESULTS: A total of 79 patients were included in the final analysis, and the reductions in pain score during hip flexion were 3.1±2.4 and 2.9±2.5 in the PENG block and SIFICB groups, respectively, which was statistically insignificant (p=0.75). Moreover, no significant differences were observed in any of the outcomes. CONCLUSIONS: PENG block and SIFICB could effectively provide analgesia for dynamic pain in patients with hip fractures, with no significant difference between the two groups. TRIAL REGISTRATION NUMBER: NCT04677348.

4.
Cell Commun Signal ; 22(1): 323, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867259

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) are widely used in the development of therapeutic tools in regenerative medicine. However, their quality decreases during in vitro expansion because of heterogeneity and acquired cellular senescence. We investigated the potential role of podoplanin (PDPN) in minimizing cellular senescence and maintaining the stemness of tonsil-derived MSCs (TMSCs). METHODS: TMSCs were isolated from human tonsil tissues using an enzymatic method, expanded, and divided into two groups: early-passaged TMSCs, which were cultured for 3-7 passages, and late-passaged TMSCs, which were passaged more than 15 times. The TMSCs were evaluated for cellular senescence and MSC characteristics, and PDPN-positive and -negative cells were identified by fluorescence-activated cell sorting. In addition, MSC features were assessed in siRNA-mediated PDPN-depleted TMSCs. RESULTS: TMSCs, when passaged more than 15 times and becoming senescent, exhibited reduced proliferative rates, telomere length, pluripotency marker (NANOG, OCT4, and SOX2) expression, and tri-lineage differentiation potential (adipogenesis, chondrogenesis, or osteogenesis) compared to cells passaged less than five times. Furthermore, PDPN protein levels significantly decreased in a passage-dependent manner. PDPN-positive cells maintained their stemness characteristics, such as MSC-specific surface antigen (CD14, CD34, CD45, CD73, CD90, and CD105) and pluripotency marker expression, and exhibited higher tri-lineage differentiation potential than PDPN-negative cells. SiRNA-mediated silencing of PDPN led to decreased cell-cycle progression, proliferation, and migration, indicating the significance of PDPN as a preliminary senescence-related factor. These reductions directly contributed to the induction of cellular senescence via p16Ink4a/Rb pathway activation. CONCLUSION: PDPN may serve as a novel biomarker to mitigate cellular senescence in the clinical application of MSCs.


Subject(s)
Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p16 , Membrane Glycoproteins , Mesenchymal Stem Cells , Palatine Tonsil , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Palatine Tonsil/cytology , Palatine Tonsil/metabolism , Cell Differentiation , Cell Proliferation , Signal Transduction , Cells, Cultured
5.
J Control Release ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880331

ABSTRACT

KRAS-mutant cancers, due to their protein targeting complexity, present significant therapeutic hurdles. The identification of the macropinocytic phenotype in these cancers has emerged as a promising alternative therapeutic target. Our study introduces MPD1, an macropinocytosis-targeting peptide-drug conjugates (PDC), which is developed to treat KRAS mutant cancers. This PDC is specifically designed to trigger a positive feedback loop through its caspase-3 cleavable characteristic. However, we observe that this loop is hindered by DNA-PK mediated DNA damage repair processes in cancer cells. To counter this impediment, we employ AZD7648, a DNA-PK inhibitor. Interestingly, the combined treatment of MPD1 and AZD7648 resulted in a 100% complete response rate in KRAS-mutant xenograft model. We focus on the synergic mechanism of it. We discover that AZD7648 specifically enhances macropinocytosis in KRAS-mutant cancer cells. Further analysis uncovers a significant correlation between the increase in macropinocytosis and PI3K signaling, driven by AMPK pathways. Also, AZD7648 reinforces the positive feedback loop, leading to escalated apoptosis and enhanced payload accumulation within tumors. AZD7648 possesses broad applications in augmenting nano-sized drug delivery and preventing DNA repair resistance. The promising efficacy and evident synergy underscore the potential of combining MPD1 with AZD7648 as a strategy for treating KRAS-mutant cancers.

6.
Cancer Immunol Immunother ; 73(8): 157, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834889

ABSTRACT

Interleukin-2 (IL-2), a cytokine with pleiotropic immune effects, was the first approved cancer immunotherapy agent. However, IL-2 is associated with systemic toxicity due to binding with its ligand IL-2Rα, such as vascular leakage syndrome, limiting its clinical applications. Despite efforts to extend the half-life of IL-2 and abolish IL-2Rα interactions, the risk of toxicity remains unresolved. In this study, we developed the bispecific fusion protein MB2033, comprising a novel IL-2 variant (IL-2v) connected to anti-programmed death ligand 1 (PD-L1) via a silenced Fc domain. The IL-2v of MB2033 exhibits attenuated affinity for IL-2Rßγ without binding to IL-2Rα. The binding affinity of MB2033 for PD-L1 is greater than that for IL-2Rßγ, indicating its preferential targeting of PD-L1+ tumor cells to induce tumor-specific immune activation. Accordingly, MB2033 exhibited significantly reduced regulatory T cell activation, while inducing comparable CD8+ T cell activation to recombinant human IL-2 (rhIL-2). MB2033 induced lower immune cell expansion and reduced cytokine levels compared with rhIL-2 in human peripheral blood mononuclear cells, indicating a decreased risk of peripheral toxicity. MB2033 exhibited superior anti-tumor efficacy, including tumor growth inhibition and complete responses, compared with avelumab monotherapy in an MC38 syngeneic mouse model. In normal mice, MB2033 was safer than non-α IL-2v and tolerable up to 30 mg/kg. These preclinical results provide evidence of the dual advantages of MB2033 with an enhanced safety and potent clinical efficacy for cancer treatment.


Subject(s)
B7-H1 Antigen , Interleukin-2 , Recombinant Fusion Proteins , Animals , Mice , Humans , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Female , Mice, Inbred C57BL , Immunotherapy/methods , Cell Line, Tumor , Melanoma, Experimental/drug therapy , Melanoma, Experimental/immunology
7.
Cardiovasc Res ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722818

ABSTRACT

AIM: Abdominal aortic aneurysm (AAA) is a common, serious vascular disease with no effective pharmacological treatment. The nucleoside adenosine plays an important role in modulating vascular homeostasis, which prompted us to determine whether adenosine kinase (ADK), an adenosine metabolizing enzyme, modulates AAA formation via control of intracellular adenosine level, and to investigate the underlying mechanisms. METHODS AND RESULTS: We used a combination of genetic and pharmacological approaches in murine models of AAA induced by calcium chloride (CaCl2) application or angiotensin II (Ang II) infusion to study the role of ADK in the development of AAA. In vitro functional assays were performed by knocking down ADK with adenovirus-short hairpin RNA in human vascular smooth muscle cells (VSMCs), and the molecular mechanisms underlying ADK function were investigated using RNA-sequencing, isotope tracing and chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR). Heterozygous deficiency of Adk protected mice from CaCl2- and Ang II-induced AAA formation. Moreover, specific knockout of Adk in VSMCs prevented Ang II-induced AAA formation, as evidenced by reduced aortic extracellular elastin fragmentation, neovascularization and aortic inflammation. Mechanistically, ADK knockdown in VSMCs markedly suppressed the expression of inflammatory genes associated with AAA formation, and these effects were independent of adenosine receptors. Metabolic flux and ChIP-qPCR results showed that ADK knockdown in VSMCs decreased S-adenosylmethionine (SAM)-dependent transmethylation, thereby reducing H3K4me3 binding to the promoter regions of the genes that are associated with inflammation, angiogenesis and extracellular elastin fragmentation. Furthermore, the ADK inhibitor ABT702 protected mice from CaCl2-induced aortic inflammation, extracellular elastin fragmentation and AAA formation. CONCLUSION: Our findings reveal a novel role for ADK inhibition in attenuating AAA via epigenetic modulation of key inflammatory genes linked to AAA pathogenesis.

8.
Sci Total Environ ; 933: 173200, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38750763

ABSTRACT

This study investigated the effects of groundwater-surface water (GW-SW) interactions on the fate and transport of arsenic (As) following rainfall events and subsequent water-table changes in GW-SW mixing zones, comprising the riparian and hyporheic zones, near an abandoned gold mine. During the dry and wet periods, stream conditions changed from flow-through to gaining, respectively. Water-table changes caused by rainfall events controlled flow paths between riparian zones and the stream, affecting spatiotemporal variation in the redox and pH conditions of the aquatic environment. Subsequently, the fate and transport of As in GW-SW mixing zones was responsive to variations in redox and pH conditions. Through the oxidative dissolution of As-bearing sulfide minerals and the reductive dissolution of iron (Fe) oxides with adsorbed As, As was released into the groundwater in the riparian zones and transported to the stream and streambed along the baseflow discharge. However, As was also immobilized in the sediment through adsorption onto Fe-oxides and coprecipitation with calcium (Ca) and zinc (Zn), suggesting that the sediment acts as a sink-and-source of As in aquatic environments. Therefore, water-table changes and GW-SW interactions could play an important role in the fate and transport of As in aquatic environments, specifically groundwater-riparian-streambed-stream systems. The findings of this study will provide scientific insights into the mechanisms of As in aquatic environments, aiding in improved decision-making to ensure safe and sustainable water management in response to future climate change.

9.
J Vet Diagn Invest ; 36(3): 428-437, 2024 May.
Article in English | MEDLINE | ID: mdl-38711295

ABSTRACT

Bovine abortion is a critical problem in the cattle industry. Identifying causes of abortion is key to establishing appropriate herd management and prevention strategies. We used pathology examinations, detection of etiologic agents, and serology to determine the cause of bovine abortions in Korea. We analyzed 360 abortion and stillbirth cases submitted to the Animal and Plant Quarantine Agency from December 2014 to January 2020. The putative cause of abortion was identified in 140 of 360 (38.9%) cases; 124 of the 140 (88.6%) cases were attributed to infections. The most common etiologic agents detected were bovine viral diarrhea virus (65 of 360; 18.1%), Coxiella burnetii (19 of 360; 5.3%), Leptospira spp. (13 of 360; 3.6%), Listeria monocytogenes (9 of 360; 2.5%), and Neospora caninum (8 of 360; 2.2%). Minor abortifacient pathogens included Brucella abortus (2 of 360; 0.6%), bovine alphaherpesvirus 1 (2 of 360; 0.6%), Akabane virus (2 of 360, 0.6%), and bovine ephemeral fever virus (1 of 360; 0.3%). Non-infectious conditions included congenital anomalies (7 of 360; 1.9%), goiter (7 of 360; 1.9%), and vitamin A deficiency (2 of 360; 0.6%). Our diagnostic rate in cases with placenta submitted (42 of 86; 48.8%) was significantly higher than in cases without placenta (98 of 274; 35.8%), which highlights the value of submitting placentas. Our results confirm the status of the large variety of causative agents associated with abortions in cattle in Korea.


Subject(s)
Abortion, Veterinary , Cattle Diseases , Stillbirth , Animals , Cattle , Abortion, Veterinary/virology , Abortion, Veterinary/microbiology , Abortion, Veterinary/epidemiology , Republic of Korea/epidemiology , Female , Stillbirth/veterinary , Stillbirth/epidemiology , Cattle Diseases/epidemiology , Cattle Diseases/virology , Cattle Diseases/microbiology , Pregnancy
10.
Cancers (Basel) ; 16(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791922

ABSTRACT

Background: We retrospectively evaluated the usefulness of an elevated glucose-to-lymphocyte ratio (GLR) as a sensitive prognostic biomarker of disease-specific survival in 338 patients who underwent surgical resection of pancreatic ductal adenocarcinoma (PDAC). Methods: The optimal GLR cutoff value was determined using the method of Contal and O'Quigley. Patient demographics, clinical information, and imaging data were analyzed to identify preoperative predictors of long-term survival outcomes. Results: Elevated GLR correlated significantly with aggressive tumor biologic behaviors, such as a high carbohydrate antigen (CA) 19-9 level (p = 0.003) and large tumor size (p = 0.011). Multivariate analysis identified (1) GLR > 92.72 [hazard ratio (HR) = 2.475, p < 0.001], (2) CA 19-9 level > 145.35 (HR = 1.577, p = 0.068), and (3) symptoms (p = 0.064) as independent predictors of long-term, cancer-specific survival. These three risk factors were used to group patients into groups 1 (0 factors), 2 (1-2 factors), and 3 (3 factors), which corresponded to significantly different 5-year overall survival rates (50.2%, 34.6%, and 11.7%, respectively; p < 0.001). Conclusions: An elevated preoperative GLR is associated with aggressive tumor characteristics and is an independent predictor of poor postoperative prognosis in patients with PDAC. Further prospective studies are required to verify these findings.

11.
Biomaterials ; 310: 122625, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38820768

ABSTRACT

We evaluated modulation of the immunosuppressive tumor microenvironment in both local and liver metastatic colorectal cancer (LMCC), focusing on tumor-associated macrophages, which are the predominant immunosuppressive cells in LMCC. We developed an orally administered metronomic chemotherapy regimen, oral CAPOX. This regimen combines capecitabine and a nano-micelle encapsulated, lysine-linked deoxycholate and oxaliplatin complex (OPt/LDC-NM). The treatment effectively modulated immune cells within the tumor microenvironment by activating the cGAS-STING pathway and inducing immunogenic cell death. This therapy modulated immune cells more effectively than did capecitabine monotherapy, the current standard maintenance chemotherapy for colorectal cancer. The macrophage-modifying effect of oral CAPOX was mediated via the cGAS-STING pathway. This is a newly identified mode of immune cell activation induced by metronomic chemotherapy. Moreover, oral CAPOX synergized with anti-PD-1 antibody (αPD-1) to enhance the T-cell-mediated antitumor immune response. In the CT26. CL25 subcutaneous model, combination therapy achieved a 91 % complete response rate with a confirmed memory effect against the tumor. This combination also altered the immunosuppressive tumor microenvironment in LMCC, which αPD-1 monotherapy could not achieve. Oral CAPOX and αPD-1 combination therapy outperformed the maximum tolerated dose for treating LMCC, suggesting metronomic therapy as a promising strategy.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Membrane Proteins , Nucleotidyltransferases , Oxaliplatin , Tumor Microenvironment , Tumor Microenvironment/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/immunology , Animals , Membrane Proteins/metabolism , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Oxaliplatin/administration & dosage , Liver Neoplasms/secondary , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Administration, Oral , Cell Line, Tumor , Nucleotidyltransferases/metabolism , Mice , Mice, Inbred BALB C , Capecitabine/pharmacology , Capecitabine/therapeutic use , Capecitabine/administration & dosage , Humans , Signal Transduction/drug effects , Female , Deoxycholic Acid/chemistry , Deoxycholic Acid/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism
12.
Biomacromolecules ; 25(6): 3850-3862, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38775104

ABSTRACT

Cationic polysaccharides have been extensively studied for drug delivery via the bloodstream, yet few have progressed to clinical use. Endothelial cells lining the blood vessel wall are coated in an anionic extracellular matrix called the glycocalyx. However, we do not fully comprehend the charged polysaccharide interactions with the glycocalyx. We reveal that the cationic polysaccharide poly(acetyl, arginyl) glucosamine (PAAG) exhibits the highest association with the endothelial glycocalyx, followed by dextran (neutral) and hyaluronan (anionic). Furthermore, we demonstrate that PAAG binds heparan sulfate (HS) within the glycocalyx, leading to intracellular accumulation. Using an in vitro glycocalyx model, we demonstrate a charge-based extent of association of polysaccharides with HS. Mechanistically, we observe that PAAG binding to HS occurs via a condensation reaction and functionally protects HS from degradation. Together, this study reveals the interplay between polysaccharide charge properties and interactions with the endothelial cell glycocalyx toward improved delivery system design and application.


Subject(s)
Cations , Extracellular Matrix , Glycocalyx , Heparitin Sulfate , Heparitin Sulfate/chemistry , Heparitin Sulfate/metabolism , Humans , Glycocalyx/metabolism , Glycocalyx/chemistry , Extracellular Matrix/metabolism , Cations/chemistry , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism
13.
Cells ; 13(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38727265

ABSTRACT

Fibrous dysplasia (FD) is a rare bone disorder characterized by the replacement of normal bone with benign fibro-osseous tissue. Developments in our understanding of the pathophysiology and treatment options are impeded by the lack of suitable research models. In this study, we developed an in vitro organotypic model capable of recapitulating key intrinsic and phenotypic properties of FD. Initially, transcriptomic profiling of individual cells isolated from patient lesional tissues unveiled intralesional molecular and cellular heterogeneity. Leveraging these insights, we established patient-derived organoids (PDOs) using primary cells obtained from patient FD lesions. Evaluation of PDOs demonstrated preservation of fibrosis-associated constituent cell types and transcriptional signatures observed in FD lesions. Additionally, PDOs retained distinct constellations of genomic and metabolic alterations characteristic of FD. Histological evaluation further corroborated the fidelity of PDOs in recapitulating important phenotypic features of FD that underscore their pathophysiological relevance. Our findings represent meaningful progress in the field, as they open up the possibility for in vitro modeling of rare bone lesions in a three-dimensional context and may signify the first step towards creating a personalized platform for research and therapeutic studies.


Subject(s)
Fibrous Dysplasia of Bone , Organoids , Phenotype , Humans , Organoids/pathology , Organoids/metabolism , Fibrous Dysplasia of Bone/pathology , Fibrous Dysplasia of Bone/genetics , Fibrous Dysplasia of Bone/metabolism , Male , Female , Transcriptome/genetics , Adult
14.
Article in English | MEDLINE | ID: mdl-38717361

ABSTRACT

Acylglycerophosphate acyltransferases (AGPATs) catalyze the de novo formation of phosphatidic acid to synthesize glycerophospholipids and triglycerides. AGPATs demonstrate unique physiological roles despite a similar biochemical function. AGPAT3 is highly expressed in the testis, kidney, and liver, with intermediate expression in adipose tissue. Loss of Agpat3 is associated with reproductive abnormalities and visual dysfunction. However, the role of AGPAT3 in adipose tissue and whole-body metabolism has not been investigated. We found that male Agpat3-KO mice exhibited reduced body weights with decreased white and brown adipose tissue mass. Such changes were less pronounced in the female Agpat3-KO mice. Agpat3-KO mice have reduced plasma insulin growth factor 1 (IGF1) and insulin levels and diminished circulating lipid metabolites. They manifested intact glucose homeostasis and insulin sensitivity despite a lean phenotype. Agpat3-KO mice maintained an energy balance with normal food intake, energy expenditure, and physical activity, except for increased water intake. Their adaptive thermogenesis was also normal despite reduced brown adipose mass and triglyceride content. Mechanistically, Agpat3 was elevated during mouse and human adipogenesis and enriched in adipocytes. Agpat3-knockdown 3T3-L1 cells and Agpat3-deficient mouse embryonic fibroblasts (MEFs) have impaired adipogenesis in vitro. Interestingly, pioglitazone treatment rescued the adipogenic deficiency in Agpat3 deficient cells. We conclude that AGPAT3 regulates adipogenesis and adipose development. It is possible that adipogenic impairment in Agpat3 deficient cells potentially leads to reduced adipose mass. Findings from this work support the unique role of AGPAT3 in adipose tissue.

15.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732172

ABSTRACT

Fibrous dysplasia (FD) poses a therapeutic challenge due to the dysregulated extracellular matrix (ECM) accumulation within affected bone tissues. In this study, we investigate the therapeutic potential of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in managing FD by examining its effects on FD-derived cells in vitro. Our findings demonstrate that 1,25(OH)2D3 treatment attenuates the pro-fibrotic phenotype of FD-derived cells by suppressing the expression of key pro-fibrotic markers and inhibiting cell proliferation and migration. Moreover, 1,25(OH)2D3 enhances mineralization by attenuating pre-osteoblastic cellular hyperactivity and promoting maturation towards an osteocytic phenotype. These results offer valuable insights into potential treatments for FD, highlighting the role of 1,25(OH)2D3 in modulating the pathological properties of FD-derived cells.


Subject(s)
Cell Proliferation , Fibrous Dysplasia of Bone , Humans , Cell Proliferation/drug effects , Fibrous Dysplasia of Bone/metabolism , Fibrous Dysplasia of Bone/pathology , Fibrous Dysplasia of Bone/drug therapy , Phenotype , Vitamin D/pharmacology , Vitamin D/metabolism , Fibrosis , Osteoblasts/drug effects , Osteoblasts/metabolism , Cell Movement/drug effects , Cell Differentiation/drug effects , Calcitriol/pharmacology , Cells, Cultured
17.
Food Res Int ; 187: 114417, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763667

ABSTRACT

Resistant starch serves as a prebiotic in the large intestine, aiding in the maintenance of a healthy intestinal environment and mitigating associated chronic illnesses. This study aimed to investigate the impact of resistant starch-enriched brown rice (RBR) on intestinal health and functionality. We assessed changes in resistant starch concentration, structural alterations, and branch chain length distribution throughout the digestion process using an in vitro model. The efficacy of RBR in the intestinal environment was evaluated through analyses of its prebiotic potential, effects on intestinal microbiota, and intestinal function-related proteins in obese animals fed a high-fat diet. RBR exhibited a higher yield of insoluble fraction in both the small and large intestines compared to white and brown rice. The total digestible starch content decreased, while the resistant starch content significantly increased during in vitro digestion. Furthermore, RBR notably enhanced the growth of four probiotic strains compared to white and brown rice, displaying higher proliferation activity than the positive control, FOS. Notably, consumption of RBR by high-fat diet-induced obese mice suppressed colon shortening, increased Bifidobacteria growth, and improved intestinal permeability. These findings underscore the potential prebiotic and gut health-promoting attributes of RBR, offering insights for the development of functional foods aimed at preventing gastrointestinal diseases.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Mice, Inbred C57BL , Obesity , Oryza , Prebiotics , Starch , Animals , Oryza/chemistry , Gastrointestinal Microbiome/drug effects , Mice , Starch/metabolism , Male , Obesity/metabolism , Mice, Obese , Resistant Starch , Probiotics , Digestion , Bifidobacterium/growth & development
18.
Nano Lett ; 24(20): 5937-5943, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38712885

ABSTRACT

Advanced microelectronics in the future may require semiconducting channel materials beyond silicon. Two-dimensional (2D) semiconductors, with their atomically thin thickness, hold great promise for future electronic devices. One challenge to achieving high-performance 2D semiconductor field effect transistors (FET) is the high contact resistance at the metal-semiconductor interface. In this study, we develop a charge-transfer doping strategy with WSe2/α-RuCl3 heterostructures to achieve low-resistance ohmic contact for p-type monolayer WSe2 transistors. We show that hole doping as high as 3 × 1013 cm-2 can be achieved in the WSe2/α-RuCl3 heterostructure due to its type-III band alignment, resulting in an ohmic contact with resistance of 4 kΩ µm. Based on that, we demonstrate p-type WSe2 transistors with an on-current of 35 µA·µm-1 and an ION/IOFF ratio exceeding 109 at room temperature.

19.
Vaccines (Basel) ; 12(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38793727

ABSTRACT

Outbreaks caused by foot-and-mouth disease (FMD) A/ASIA/G-VII lineage viruses have often occurred in Middle Eastern and Southeast Asian countries since 2015. Because A/ASIA/G-VII lineage viruses are reported to have distinct antigenic relatedness with available commercial FMD vaccine strains, it is necessary to investigate whether inoculation with vaccines used in Korea could confer cross-protection against A/ASIA/G-VII lineage viruses. In the present study, we conducted two vaccination challenge trials to evaluate the efficacy of three commercial FMD vaccines (O/Manisa + O/3039 + A/Iraq, O/Campos + A/Cruzeiro + A/2001, and O/Primorsky + A/Zabaikalsky) against heterologous challenge with ASIA/G-VII lineage viruses (A/TUR/13/2017 or A/BHU/3/2017 strains) in pigs. In each trial, clinical signs, viremia, and salivary shedding of virus were measured for 7 days after challenge. In summary, the O/Campos + A/Cruzeiro + A/2001 vaccine provided full protection against two A/ASIA/G-VII lineage viruses in vaccinated pigs, where significant protection was observed. Although unprotected animals were observed in groups vaccinated with O/Manisa + O/3039 + A/Iraq or O/Primorsky + A/Zabaikalsky vaccines, the clinical scores and viral RNA levels in the sera and oral swabs of vaccinated animals were significantly lower than those of unvaccinated controls.

20.
ACS Appl Mater Interfaces ; 16(15): 19121-19136, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38588341

ABSTRACT

Plate-type hollow black TiO2 (HL/BT) with a high NIR reflectance was fabricated for the first time as a LiDAR-detectable black material. A TiO2 layer was formed on commercial-grade glass by using the sol-gel method to obtain a plate-type structure. The glass template was then etched with hydrofluoric acid to form a hollow structure, and blackness was further achieved through NaBH4 reduction, which altered the oxidation state of TiO2 to black TixO2x-1 or Ti4+ to Ti3+ and Ti2+. The blackness of the HL/BT material was maintained by a novel approach that involved etching prior to reduction. The thickness of the TiO2 layer was controlled to maximize the NIR reflectance when applied as paint. The HL/BT material with a thickness of 140 nm (HL/BT140) showed a blackness (L*) of 13.3 and high NIR reflectance of 23.6% at a wavelength of 905 nm. This is attributed to the effective light reflection at the interface created by the TiO2 layer and the hollow structure. Plate-type HL/BT140 provides excellent spreadability, durability, and thermal stability in practical paint applications compared with sphere-type materials due to the higher contacting area to the applied surface, making it suitable for use as a LiDAR-detectable inorganic black pigment in autonomous environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...