Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 20495, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34650119

ABSTRACT

The outbreak of novel COVID-19 disease elicited a wide range of anti-contagion and economic policies like school closure, income support, contact tracing, and so forth, in the mitigation and suppression of the spread of the SARS-CoV-2 virus. However, a systematic evaluation of these policies has not been made. Here, 17 implemented policies from the Oxford COVID-19 Government Response Tracker dataset employed in 90 countries from December 31, 2019, to August 31, 2020, were analyzed. A Poisson regression model was applied to analyze the relationship between policies and daily confirmed cases using a generalized estimating equations approach. A lag is a fixed time displacement in time series data. With that, lagging (0, 3, 7, 10, and 14 days) was also considered during the analysis since the effects of policies implemented on a given day may affect the number of confirmed cases several days after implementation. The countries were divided into three groups depending on the number of waves of the pandemic observed in each country. Through subgroup analysis, we showed that with and without lagging, contact tracing and containment policies were significant for countries with two waves, while closing, economic, and health policies were significant for countries with three waves. Wave-specific analysis for each wave showed that significant health, economic, and containment policies varied across waves of the pandemic. Emergency investment in healthcare was consistently significant among the three groups of countries, while the Stringency index was significant among all waves of the pandemic. These findings may help in making informed decisions regarding whether, which, or when these policies should be intensified or lifted.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , Contact Tracing , Government , Health Policy , Humans , SARS-CoV-2/isolation & purification
2.
Article in English | MEDLINE | ID: mdl-34300044

ABSTRACT

The outbreak of the novel COVID-19, declared a global pandemic by WHO, is the most serious public health threat seen in terms of respiratory viruses since the 1918 H1N1 influenza pandemic. It is surprising that the total number of COVID-19 confirmed cases and the number of deaths has varied greatly across countries. Such great variations are caused by age population, health conditions, travel, economy, and environmental factors. Here, we investigated which national factors (life expectancy, aging index, human development index, percentage of malnourished people in the population, extreme poverty, economic ability, health policy, population, age distributions, etc.) influenced the spread of COVID-19 through systematic statistical analysis. First, we employed segmented growth curve models (GCMs) to model the cumulative confirmed cases for 134 countries from 1 January to 31 August 2020 (logistic and Gompertz). Thus, each country's COVID-19 spread pattern was summarized into three growth-curve model parameters. Secondly, we investigated the relationship of selected 31 national factors (from KOSIS and Our World in Data) to these GCM parameters. Our analysis showed that with time, the parameters were influenced by different factors; for example, the parameter related to the maximum number of predicted cumulative confirmed cases was greatly influenced by the total population size, as expected. The other parameter related to the rate of spread of COVID-19 was influenced by aging index, cardiovascular death rate, extreme poverty, median age, percentage of population aged 65 or 70 and older, and so forth. We hope that with their consideration of a country's resources and population dynamics that our results will help in making informed decisions with the most impact against similar infectious diseases.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , SARS-CoV-2 , Travel
3.
Article in English | MEDLINE | ID: mdl-33671746

ABSTRACT

Since the outbreak of novel SARS-COV-2, each country has implemented diverse policies to mitigate and suppress the spread of the virus. However, no systematic evaluation of these policies in their alleviation of the pandemic has been done. We investigate the impact of five indices derived from 12 policies in the Oxford COVID-19 Government Response Tracker dataset and the Korean government's index, which is the social distancing level implemented by the Korean government in response to the changing pandemic situation. We employed segmented Poisson model for this analysis. In conclusion, health and the Korean government indices are most consistently effective (with negative coefficients), while the restriction and stringency indexes are mainly effective with lagging (1~10 days), as intuitively daily confirmed cases of a given day is affected by the policies implemented days before, which shows that a period of time is required before the impact of some policies can be observed. The health index demonstrates the importance of public information campaign, testing policy and contact tracing, while the government index shows the importance of social distancing guidelines in mitigating the spread of the virus. These results imply the important roles of these polices in mitigation of the spread of COVID-19 disease.


Subject(s)
COVID-19/prevention & control , Government , Health Policy , Humans , Pandemics , Republic of Korea
4.
J Colloid Interface Sci ; 564: 65-76, 2020 Mar 22.
Article in English | MEDLINE | ID: mdl-31901835

ABSTRACT

In this study, mesoporous nickel cobaltite (NiCo2O4) nanorods as electrode materials for high-performance hybrid supercapacitor were fabricated onto Ni foam by a simple and cost effective oxalic acid (OA) assisted rapid co-precipitation method. The effects of different metal precursors (NCO-Nitrate, NCO-Chloride and NCO-Acetate) on the electrochemical capacitive properties were studied. FE-SEM analysis confirmed that all samples exhibited highly dense mesoporous NiCo2O4 nanorods vertically grown on the surface of Ni foam with excess accessible surfaces and unique sizes and morphologies. The resultant NiCo2O4 nanorod electrodes (for NCO-Nitrate, NCO-Chloride and NCO-Acetate) delivered the maximum specific capacitances of 790, 784, 776 F g-1 at the current density of 1 A g-1 with ultra-high capacitance retention of 82.27, 81.63 and 81.71% even at 20 A g-1 and excellent cyclic stability of 84.25, 83.33 and 83.24% capacitance retention at 5 A g-1 after 5000 cycles. The asymmetric supercapacitor (ASC) device was also sandwiched by using NCO-Nitrate as positive electrode and N-doped graphene hydrogel (NGH) as negative electrode. The fabricated ASC device delivered superior energy density (42.5 W h kg-1) at high power density (746.34 W kg-1) with excellent long cyclic stability (90% initial capacitance retention after 5000 cycles at 5 A g-1).

5.
Nanoscale Adv ; 2(11): 5403-5411, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-36132022

ABSTRACT

White-light-emitting materials have received significant attention because of their potential application in lighting, displays, and sensors. However, it is a challenge to obtain white light from one phosphor, because the basic requirement of the white light emission spectrum is that it should be wide enough to cover the entire visible light region. In this study, we have designed and demonstrated a white-light-emitting PMMA-CBS-127/PVP-coumarin 6/PAN-rhodamine B (PSCR) fibrous membrane, which was prepared through a triphasic electrospinning method. Three luminescent organic dyes, CBS-127 (4.77 wt%, blue), coumarin 6 (0.1 wt%, green), and rhodamine B (0.42 wt%, red), were elaborately selected and doped into PMMA, PVP, and PAN, respectively. The resulting flexible PSCR membranes show white light emission (cover the entire visible-light region from 382 to 700 nm) with Commission Internationale de L'Eclairage (CIE) coordinates of (0.31, 0.32), which is very close to ideal white light with CIE coordinates (0.33, 0.33). In addition, the PSCR membranes maintained high-quality white light emission after about 10 weeks of storage. The PSCR membranes can be used as the phosphor converting layer in white light-emitting diodes (WLEDs) through a remote membrane packaging method. A bright white emission is achieved at an applied voltage of 9 V. Therefore, the results indicate that PSCR membranes are potentially attractive candidates for application in WLEDs and displays.

6.
J Colloid Interface Sci ; 553: 622-630, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31247501

ABSTRACT

Herein, we outline the fabrication of highly porous three-dimensional carbon-fiber network anchored with uniform metallic cobalt (Co) via electrospinning and subsequent post-modification approaches. First, cobalt acetate solution saturated electrospun polyacrylonitrile (PAN) nanofibrous mat was subjected to sodium borohydride (NaBH4) solution which results in the fabrication of three dimensional (3D) hierarchical multilayer network. Restructuring of the 2D mat into multilayered sponges with metal particles entrapment is attributed to the in-situ generated hydrogen gas into the interconnected pores of the fibrous network simultaneous with reduction of cobalt salt into metallic cobalt by NaBH4. The resulting mesh was stabilized and carbonization at inert atmosphere to obtain metallic cobalt (Co) embedded 3D carbon nanofibrous networks (Co@3D-CNFs). Physicochemical characterization and electrochemical analysis were performed. Results show carbon network was found to be expanded with bubbling like structures often embedded metallic Co nanoparticles. X-ray diffraction (XRD) pattern confirms the existence of the metallic cobalt particles on the carbon fiber networks. Furthermore, we establish a resulting composite (Co@3D-CNFs) identify the enhanced electrochemical performance having specific capacitance 762 F g-1 compared to 173 and 180 F g-1 for corresponding @3D-CNFs and 2D carbon nanofiber network with cobalt doped (Co@2D-CNFs) counterparts, respectively. The assembled Co2@3D-CNFs//NGH ASC device exhibits a high energy density 24.6 W h Kg-1 at 797 W kg-1 power density with an operating voltage of 1.6 V (vs Ag/AgCl). The device further shows good capacitance retention (90.1%) after 5000 cycles. This research shows the simple and cost-effective strategy to make metallic particles embedded 3D porous carbonaceous electrode materials which can have great potential for energy storage application.

7.
Environ Pollut ; 245: 163-172, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30419457

ABSTRACT

Fly ash (FA), a solid waste generated in thermal power plants, is considered an environmental pollutant. Therefore, measures must be taken to dispose of FA in an environmentally friendly manner. In this paper, an electrospinning technique was employed to incorporate FA particles onto zinc oxide nanofibers (ZnO NFs), and the product (FA/ZnO composite) was used for the removal of methylene blue (MB) from the water. Herein, ZnO NFs may serve as effective semiconductor photocatalysts and provide sufficient surface area for FA, while the FA particles serve as an effective adsorbent. The adsorption capacity and photocatalytic efficiency of the as-synthesized nanocomposite fibers were enhanced compared to those of the pristine ZnO NFs, and this result is attributed to the uniform distribution of FA on the surface of the ZnO NFs. The as-synthesized nanocomposite could have great significance in wastewater treatment.


Subject(s)
Coal Ash/chemistry , Environmental Restoration and Remediation/methods , Methylene Blue/analysis , Nanofibers/chemistry , Water Pollutants, Chemical/analysis , Zinc Oxide/chemistry , Adsorption , Wastewater/chemistry
8.
Small ; 14(45): e1801963, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30204281

ABSTRACT

Inorganic luminescent materials as one of the important high-performance materials are widely used for industry and scientific research, mainly owing to their outstanding luminescence properties. However, inorganic luminescent materials are typically brittle and inelastic, which greatly limit their use in practical applications, particularly in flexible optoelectronic devices. In this work, it is shown that "plum-pudding" like CsPbBr3 /Cs4 PbBr6 perovskite crystals anchor onto Al2 O3 -La2 O3 (CCAL) nanofibrous membranes, which are synthesized via a facile electrospinning and subsequent supersaturated recrystallization process. The as-synthesized CCAL membranes exhibit outstanding mechanical flexibility and luminescence properties. Meanwhile, the crystal structure and luminous performance of the CCAL membranes are regulated by different molar ratios of CsBr/PbBr2 . The photoluminescence reaches a maximum value for the CCAL membranes produced with a CsBr/PbBr2 ratio of 1, and shows a narrow emission line-width of 18 nm. Furthermore, the potential applications of the CCAL nanofibrous membranes in green light devices through a remote nanofibrous membranes packaging approach are demonstrated. A pure green emission is achieved with the Commission Internationale de L'Eclairage color coordinates of (0.28, 0.65). This facile strategy would open a new avenue to flexible inorganic luminescent materials for the lighting and backlight display industries.

9.
J Colloid Interface Sci ; 522: 40-47, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29574267

ABSTRACT

A combination of electrospinning technique and hydrothermal process was carried out to fabricate zinc oxide nano-flakes wrapped carbon nanofibers (ZnO/CNFs) composite as an effective electrode material for supercapacitor. The morphology of the as-synthesized composite clearly revealed that the carbon nanofibers were successfully wrapped with ZnO nano-flakes. The electrochemical performance of the as-synthesized nanocomposite electrode was evaluated by the cyclic voltammetry (CV), galvanostatic charge-discharge (GDC), and electrochemical impedance spectroscopy (EIS), and compared with the pristine ZnO nanofibers. It was found that the composite exhibited a higher specific capacitance (260 F/g) as compared to pristine ZnO NFs (118 F/g) at the scan rate of 5 mV/s. Furthermore, the ZnO/CNFs composite also exhibited good capacity retention (73.33%). The obtained results indicated great potential applications of ZnO/CNFs composite in developing energy storage devices with high energy and power densities. The present work might provide a new route for utilizing ZnO based composites for energy storage applications.

10.
J Environ Manage ; 206: 228-235, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29073581

ABSTRACT

This study investigates three different strategies for anode surface treatment by doping superficial nitrogen groups on the anode surfaces of carbon cloth (CC) and carbon paper (CP). The chosen anodes were hydrothermally treated in the presence of an ammonia solution (AST), a mixture of nitric acid and sulfuric acid (AHT), and solid urea (UT) at 180 °C for 3 h. The utilized characterization techniques confirmed doping of nitrogen on the anode surfaces and a decrease in the oxygen-bonded carbon content. Furthermore, the results showed that the power and current densities were significantly affected by the surface modification techniques. Interestingly, the AST strategy achieved the highest power density of 159.3 mW-2 and 91.6 mWm-2, which revealed an increase in power of 115% and 56.8% for CC-AST and CP-AST, respectively. Additionally, the maximum coulombic efficiencies were 63.9% and 27.5% for the CC-AST and CP-AST anodes, respectively. Overall, these results highlight the significance of anode surface modification for enhancing MFC performance to generate electricity and treat actual wastewater.


Subject(s)
Bioelectric Energy Sources , Wastewater , Carbon , Electricity , Electrodes
11.
Nanoscale ; 9(47): 18819-18834, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29177332

ABSTRACT

Wire type supercapacitors with high energy and power densities have generated considerable interest in wearable applications. Herein, we report a novel NiCo2S4-decorated 3D, porous Ni film@Ni wire electrode for high performance supercapacitor application. In this work, a facile method is introduced to fabricate a 3D, porous Ni film deposited on a Ni wire as a flexible electrode, followed by decoration with NiCo2S4 as an electroactive material. The fabricated NiCo2S4-decorated 3D, porous Ni film@Ni wire electrode displays a superior performance with an areal and volumetric capacitance of 1.228 F cm-2 and 199.74 F cm-3, respectively, at a current density of 0.2 mA cm-1 with a maximum volumetric energy and power density (EV: 6.935 mW h cm-3; PV: 1.019 W cm-3). Finally, the solid state asymmetric wire type supercapacitor is fabricated using the fabricated NiCo2S4-decorated 3D, porous Ni film@Ni wire as a positive electrode and N-doped reduced graphene oxide (N-rGO) as a negative electrode and this exhibits good areal and volumetric capacitances of CA: 0.12 F cm-2 and CV: 19.57 F cm-2 with a higher rate capability (92%). This asymmetric wire type supercapacitor demonstrates a low leakage current and self-discharge with a maximum volumetric energy (EV: 5.33 mW h cm-3) and power (PV: 855.69 mW cm-3) density.

12.
Water Res ; 123: 524-535, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28697483

ABSTRACT

Water in the world is becoming an increasingly scarce commodity and the membrane technology is a most effective strategy to address this issue. However, the fouling and low flux of the polymeric membrane remains the big challenges. Novel modified Polyvinylidene fluoride (PVDF) membrane was introduced, in this work, using a novel treatment technique for an electrospun polymeric PVDF membrane to be used in oil/water separation systems. The Characterizations of the modified and pristine membranes showed distinct changes in the phase and crystal structure of the membrane material as well as the wettability. The modification process altered the surface morphology and structure of the membrane by forming hydrophilic microspheres on the membrane surface. Therefore, the proposed treatment converts the membrane from highly hydrophobic to be a superhydrophilic under-oil when wetted with water. Accordingly, in the separation of oil/water mixtures, the modified membrane can achieve an outstanding flux of 20664 L/m2. hr under gravity, which is higher than the pristine membrane by infinite times. Moreover, in the separation of the emulsion, a high flux of 2727 L/m2. h was achieved. The results exhibited that the modified membrane can treat a huge amount of oily water with a minimal energy consumption. The corresponding separation efficiencies of both of oil/water mixtures and emulsion are more than 99%. The achieved characteristics for the modified and pristine membranes could be exploited to design a novel continuous system for oil/water separation with an excellent efficiency.


Subject(s)
Polyvinyls/chemistry , Emulsions , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Water Purification , Wettability
13.
J Biomater Appl ; 32(2): 230-241, 2017 08.
Article in English | MEDLINE | ID: mdl-28662599

ABSTRACT

Keratin biomaterial has been used in regenerative medicine owing to its in-vivo and in-vitro biocompatibility. The present study was aimed to investigate the hair growth promoting activity of keratin extract and its mechanism of action. Keratin extract was topically applied on the synchronized depilated dorsal skin of telogenic C57BL/6 mice and promoted hair growth by inducing the anagen phase. The histomorphometric observation indicated significantly increases the number, shaft of hair follicles and deep subcutis area in the keratin extract treated group in contrast to the control group, which was considered an indication of anagen phase induction. Subsequently, the quantitative real-time polymerase chain reaction analysis revealed that fibroblast growth factor-10, vascular endothelial growth factor, insulin-like growth factor-1, ß-catenin, and Shh were expressed earlier in the keratin extract-treated group than in the control group. Besides, keratin extract has been observed to be biocompatible when analyzed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and 4',6-diamidino-2-phenylindole staining using immortalized human keratinocyte cells, showing more than 90% cell viability. Our study demonstrated that keratin extract stimulating hair follicle growth by inducing the growth phase; anagen in telogenic C57BL/6 mice and thus the topical application of keratin extract may represent a promising biomaterial for the management and applications of hair follicle disorder.


Subject(s)
Hair/drug effects , Hair/growth & development , Keratins/pharmacology , Animals , Cell Line , Cell Proliferation/drug effects , Fibroblast Growth Factor 10/genetics , Gene Expression Regulation/drug effects , Hair/metabolism , Hair Follicle/drug effects , Hair Follicle/growth & development , Hair Follicle/metabolism , Humans , Insulin-Like Growth Factor I/genetics , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratins/administration & dosage , Keratins/isolation & purification , Mice, Inbred C57BL , Vascular Endothelial Growth Factor A/genetics , beta Catenin/genetics
14.
Carbohydr Polym ; 163: 153-161, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28267492

ABSTRACT

In this study, we present a highly efficient and economical solution called as 'in situ hydrogenation' for preparation of highly conductive thin film electrode based on silver nanodendrites. The silver nanodendrite (AgND)/cellulose acetate (CA) thin film electrodes exhibited sheet resistance ranging from 0.32ohm/sq to 122.1ohm/sq which could be controlled by changing the concentration of both silver and polymer. In addition, these electrodes exhibited outstanding toughness during the bending test. Further, these thin film electrodes have great potential for scale-up with an average weight of 3mg/cm2 and can be also combined with active nanomaterials such as multiwalled carbon nanotubes (MWCNTs) to fabricate AgND/CA/MWCNTs thin film for high-performance flexible supercapacitor electrode. The AgND/CA/MWCNTs electrodes exhibited a maximum specific capacitance of 237F/g at a current density of 0.3A/g. After 1000 cycles, the AgND/MWCNT/CA exhibited a decrease of 16.0% of specific capacitance.

15.
J Colloid Interface Sci ; 496: 343-352, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28237752

ABSTRACT

Development of photocatalytic materials with magnetic and antibacterial properties is highly desirable in wastewater treatment. In this study, a novel magnetically separable silver-iron oxide nanoparticles (Ag-Fe3O4 NPs) decorated graphitic carbon nitride (g-C3N4) nanocomposite via hydrothermal treatment has been presented for the multifaceted applications. The physiochemical properties of the as-synthesized ternary nanocomposite were characterized by the field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) studies. The experimental results showed that loading of Ag on Fe3O4/g-C3N4 nanocomposite significantly improved the catalytic activity of the composite material in terms of photocatalytic degradation of methylene blue (Mdestruction of Escherichia coli (E. coli) bacteria. More importantly, the as-synthesized silver-iron oxide nanoparticles decorated graphitic carbon nitride (Ag-Fe3O4/g-C3N4) nanocomposite catalyst could be recovered by an applied external magnet and reused without the loss of photocatalytic activity. The obtained results showed that the synthesized material has potential as an economically friendly photocatalyst for environmental and energy applications.


Subject(s)
Anti-Bacterial Agents/chemistry , Ferric Compounds/chemistry , Graphite/chemistry , Magnetite Nanoparticles/chemistry , Nitriles/chemistry , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Boranes/chemistry , Boranes/radiation effects , Catalysis , Escherichia coli/drug effects , Escherichia coli/radiation effects , Humans , Hydrolysis , Light , Methylene Blue/chemistry , Nanocomposites/chemistry , Photochemical Processes , Surface Properties
16.
J Colloid Interface Sci ; 494: 338-344, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28167422

ABSTRACT

A novel and efficient CeO2-doped MnO2 nanorods decorated reduced graphene oxide (CeO2-MnO2/RGO) nanocomposite was successfully synthesized via hydrothermal method. The growth of the CeO2 doped MnO2 nanorods over GO sheets and reduction of GO were simultaneously carried out under hydrothermal treatment. The morphology and structure of as-synthesized nanocomposite were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, which revealed the formation of CeO2-MnO2 decorated RGO nanocomposites. The electrochemical performance of as-prepared CeO2-MnO2/RGO nanocomposites as an active electrode material for supercapacitor was evaluated by cyclic voltammetry, charge-discharge, and electrochemical impedance spectroscopy (EIS) methods in 2M alkaline medium. The obtained results revealed that as-synthesized CeO2-MnO2/RGO nanocomposite exhibited higher specific capacitance (648F/g) as compared to other formulations (MnO2/RGO nanocomposites: 315.13 F/g and MnO2 nanorods: 228.5 F/g) at the scan rate of 5mV/s. After 1000 cycles, it retained ∼90.4%, exhibiting a good stability. The high surface area, enhanced electrical conductivity, and good stability possess by the nanocomposite make this material a promising candidate to be applied as a supercapacitor electrode.

17.
J Nanosci Nanotechnol ; 16(4): 4080-5, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27451768

ABSTRACT

We report the hierarchically assembled nanofibers created by LbL self-assembly depending on the PSS-PAA fraction in the blend solutions and pH during bulid-up of the PAH/(PSS-PAA) multilayer films. The multilayer [(PEI/blend)/(PAH/blend)4] films with ρPAA (PSS-PAA fraction in the blend solutions) = 0.0 in the blend solution exhibited surface morphologies of randomly isolated globular clusters, while at ρPAA = 0.75, worm-like morphologies were observed. Interestingly, the multilayer [(PEI/blend)/(PAH/blend)4 films with ρPAA = 0.9 exhibited unique fibrous morphologies with the diameter of about 50 nm at narrower pH range from 3.5 to 4.2, but also the fiber diameter distribution was narrower. Based on the thickness from the X-ray reflectivity, the thickness of the one bilayer multilayer film seemed to be 8.6 nm. The 3 bilayers multilayer film seemed to be formed as islands with very large roughness. The crystal sizes of the 3 bilayers and 5 bilayers multilayer films were about 71 nm and 123 nm, respectively. The resultant films were characterized using atomic force microscopy (AFM) and real-time in situ X-ray scattering measurements.

18.
Int J Biol Sci ; 12(7): 824-35, 2016.
Article in English | MEDLINE | ID: mdl-27313496

ABSTRACT

Rapid diagnostic tests (RDTs) can detect anti-malaria antibodies in human blood. As they can detect parasite infection at the low parasite density, they are useful in endemic areas where light infection and/or re-infection of parasites are common. Thus, malaria antibody tests can be used for screening bloods in blood banks to prevent transfusion-transmitted malaria (TTM), an emerging problem in malaria endemic areas. However, only a few malaria antibody tests are available in the microwell-based assay format and these are not suitable for field application. A novel malaria antibody (Ab)-based RDT using a differential diagnostic marker for falciparum and vivax malaria was developed as a suitable high-throughput assay that is sensitive and practical for blood screening. The marker, merozoite surface protein 1 (MSP1) was discovered by generation of a Plasmodium-specific network and the hierarchical organization of modularity in the network. Clinical evaluation revealed that the novel Malaria Pf/Pv Ab RDT shows improved sensitivity (98%) and specificity (99.7%) compared with the performance of a commercial kit, SD BioLine Malaria P.f/P.v (95.1% sensitivity and 99.1% specificity). The novel Malaria Pf/Pv Ab RDT has potential for use as a cost-effective blood-screening tool for malaria and in turn, reduces TTM risk in endemic areas.


Subject(s)
Diagnostic Tests, Routine/methods , Malaria/diagnosis , Antigens, Protozoan/immunology , Malaria/metabolism , Malaria/transmission , Malaria, Falciparum/diagnosis , Malaria, Falciparum/metabolism , Malaria, Falciparum/transmission , Malaria, Vivax/diagnosis , Malaria, Vivax/metabolism , Malaria, Vivax/transmission , Merozoite Surface Protein 1/metabolism , Transfusion Reaction
19.
Sci Rep ; 6: 20313, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26828633

ABSTRACT

The design and development of an economic and highly active non-precious electrocatalyst for methanol electrooxidation is challenging due to expensiveness of the precursors as well as processes and non-ecofriendliness. In this study, a facile preparation of core-shell-like NiCo2O4 decorated MWCNTs based on a dry synthesis technique was proposed. The synthesized NiCo2O4/MWCNTs were characterized by infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and selected area energy dispersive spectrum. The bimetal oxide nanoparticles with an average size of 6 ± 2 nm were homogeneously distributed onto the surface of the MWCNTs to form a core-shell-like nanostructure. The NiCo2O4/MWCNTs exhibited excellent electrocatalytic activity for the oxidation of methanol in an alkaline solution. The NiCo2O4/MWCNTs exhibited remarkably higher current density of 327 mA/cm(2) and a lower onset potential of 0.128 V in 1.0 M KOH with as high as 5.0 M methanol. The impressive electrocatalytic activity of the NiCo2O4/MWCNTs is promising for development of direct methanol fuel cell based on non-Pt catalysts.

20.
Nanoscale ; 8(4): 2195-204, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26731700

ABSTRACT

Flexible membranes created from porous carbon nanofibers (CNFs) hold great promise in the next generation wearable energy storage devices, but challenges still remain due to the poor mechanical properties of porous carbon nanofibers. Here, we report a facile strategy to fabricate elastic and hierarchical porous CNF membranes with NiFe2O4 nanocrystals embedded via multicomponent electrospinning and nano-doping methods. Benefiting from the scattering effect of NiFe2O4 nanocrystals and graphitized carbon layers for the condensed stress, the resultant CNF membranes exhibit an enhanced elasticity with a bending radius <12 µm, rapid recovery from the deformations, and a superior softness. Quantitative pore size distribution and fractal analysis reveal that the CNFs possessed tunable porous structures with a high surface area of 493 m(2) g(-1) and a pore volume of 0.31 cm(3) g(-1). Benefiting from the robust mechanical stability, hierarchical porous structures and good electrochemical properties, the NiFe2O4 doped CNF membranes demonstrate a high electrical capacitance of 343 F g(-1), and good reversibility with a cycling efficiency of 97.4% even after 10,000 cycles. The successful synthesis of elastic porous CNF membranes also provided a versatile platform for the design and development of functional CNF based materials for various applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...