Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 45(27): 10897-908, 2016 Jul 05.
Article in English | MEDLINE | ID: mdl-27160734

ABSTRACT

Reactions of [WO(OR)4]x (x = 1, 2) complexes with bidentate ligands (LH = acacH, tbacH, dpmH, tbpaH) afforded complexes : [WO(OCH3)3(acac) (); WO(OCH2CH3)3(acac) (); WO(OCH(CH3)2)3(acac) (); WO(OCH3)3(tbac) (); WO(OCH2CH3)3(tbac) (); WO(OCH(CH3)2)3(tbac) (); WO(OCH2CH3)3(dpm) (); WO(OCH(CH3)2)3(dpm) (); WO(OCH2C(CH3)3)3(acac) (); WO(OCH2C(CH3)3)3(tbac) (); WO(OCH2C(CH3)3)3(dpm) (); WO(OCH2C(CH3)3)3(tbpa) (); WO(OC(CH3)3)3(tbac) ()]. The synthesis is facilitated by the lability of the bridging ligands of the [WO(OR)4]2 complexes in solution, which provides a pathway for exchange of L with an alkoxide ligand. Thermogravimetric analysis and the conditions for sublimation or distillation of demonstrate that they have sufficient vapor pressure and thermal stability for volatilization in a conventional Chemical Vapor Deposition (CVD) reactor. High solubility in hydrocarbon and ether solvents establishes that the complexes are also potential candidates for Aerosol-Assisted Chemical Vapor Deposition (AACVD). AACVD from on ITO or bare glass resulted in growth of continuous, dense and amorphous thin films of substoichiometric WOx between 250-350 °C and nanorods of W18O49 above 350 °C.

2.
Inorg Chem ; 54(15): 7536-47, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26172992

ABSTRACT

The soluble bis(fluoroalkoxide) dioxo tungsten(VI) complexes WO2(OR)2(DME) [1, R = C(CF3)2CH3; 2, R = C(CF3)3] have been synthesized by alkoxide-chloride metathesis and evaluated as precursors for aerosol-assisted chemical vapor deposition (AACVD) of WOx. The (1)H NMR and (19)F NMR spectra of 1 and 2 are consistent with an equilibrium between the dimethoxyethane (DME) complexes 1 and 2 and the solvato complexes WO2(OR)2(CD3CN)2 [1b, R = C(CF3)2CH3; 2b, R = C(CF3)3] in acetonitrile-d3 solution. Studies of the fragmentation of 1 and 2 by mass spectrometry and thermolysis resulted in observation of DME and the corresponding alcohols, with hexafluoroisobutylene also generated from 1. DFT calculations on possible decomposition mechanisms for 1 located pathways for hydrogen abstraction by a terminal oxo to form hexafluoroisobutylene, followed by dimerization of the resulting terminal hydroxide complex and dissociation of the alcohol. AACVD using 1 occurred between 100 and 550 °C and produced both substoichiometric amorphous WOx and a polycrystalline W18O49 monoclinic phase, which exhibits 1-D preferred growth in the [010] direction. The work function (4.9-5.6 eV), mean optical transmittance (39.1-91.1%), conductivity (0.4-2.3 S/cm), and surface roughness (3.4-7.9 nm) of the WOx films are suitable for charge injection layers in organic electronics.

3.
ACS Appl Mater Interfaces ; 7(4): 2660-7, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25569472

ABSTRACT

Aerosol-assisted chemical vapor deposition (AACVD) of WOx was demonstrated using the oxo tungsten(VI) fluoroalkoxide single-source precursors, WO[OCCH3(CF3)2]4 and WO[OC(CH3)2CF3]4. Substoichiometric amorphous tungsten oxide thin films were grown on indium tin oxide (ITO) substrates in nitrogen at low deposition temperature (100-250 °C). At growth temperatures above 300 °C, the W18O49 monoclinic crystalline phase was observed. The surface morphology and roughness, visible light transmittance, electrical conductivity, and work function of the tungsten oxide materials are reported. The solvent and carrier gas minimally affected surface morphology and composition at low deposition temperature; however, material crystallinity varied with solvent choice at higher temperatures. The work function of the tungsten oxide thin films grown between 150 and 250 °C was determined to be in the range 5.0 to 5.7 eV, according to ultraviolet photoelectron spectroscopy (UPS).

4.
Dalton Trans ; 43(24): 9226-33, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24821611

ABSTRACT

The partially fluorinated oxo-alkoxide tungsten(VI) complexes WO(OR)4 [4; R = C(CH3)2CF3, 5; R = C(CH3)(CF3)2] have been synthesized as precursors for chemical vapour deposition (CVD) of WOx nanocrystalline material. Complexes 4 and 5 were prepared by salt metathesis between sodium salts of the fluoroalkoxides and WOCl4. Crystallographic structure analysis allows comparison of the bonding in 4 and 5 as the fluorine content of the fluoroalkoxide ligands is varied. Screening of as a CVD precursor by mass spectrometry and thermogravimetric analysis was followed by deposition of WOx nanorods.

SELECTION OF CITATIONS
SEARCH DETAIL
...