Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(15)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32751836

ABSTRACT

Aluminum nitride (AlN) thin films were grown using thermal atomic layer deposition in the temperature range of 175-350 °C. The thin films were deposited using trimethyl aluminum (TMA) and hydrazine (N2H4) as a metal precursor and nitrogen source, respectively. Highly reactive N2H4, compared to its conventionally used counterpart, ammonia (NH3), provides a higher growth per cycle (GPC), which is approximately 2.3 times higher at a deposition temperature of 300 °C and, also exhibits a low impurity concentration in as-deposited films. Low temperature AlN films deposited at 225 °C with a capping layer had an Al to N composition ratio of 1:1.1, a close to ideal composition ratio, with a low oxygen content (7.5%) while exhibiting a GPC of 0.16 nm/cycle. We suggest that N2H4 as a replacement for NH3 is a good alternative due to its stringent thermal budget.

2.
Materials (Basel) ; 13(13)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630791

ABSTRACT

The discovery of ferroelectricity in HfO2-based materials in 2011 provided new research directions and opportunities. In particular, for atomic layer deposited Hf0.5Zr0.5O2 (HZO) films, it is possible to obtain homogenous thin films with satisfactory ferroelectric properties at a low thermal budget process. Based on experiment demonstrations over the past 10 years, it is well known that HZO films show excellent ferroelectricity when sandwiched between TiN top and bottom electrodes. This work reports a comprehensive study on the effect of TiN top and bottom electrodes on the ferroelectric properties of HZO thin films (10 nm). Investigations showed that during HZO crystallization, the TiN bottom electrode promoted ferroelectric phase formation (by oxygen scavenging) and the TiN top electrode inhibited non-ferroelectric phase formation (by stress-induced crystallization). In addition, it was confirmed that the TiN top and bottom electrodes acted as a barrier layer to hydrogen diffusion into the HZO thin film during annealing in a hydrogen-containing atmosphere. These features make the TiN electrodes a useful strategy for improving and preserving the ferroelectric properties of HZO thin films for next-generation memory applications.

3.
ACS Comb Sci ; 21(6): 445-455, 2019 06 10.
Article in English | MEDLINE | ID: mdl-31063348

ABSTRACT

Though the synthesis of libraries of multicomponent metal oxide systems is prevalent using the combinatorial approach, the combinatorial approach has been rarely realized in studying simple metal oxides, especially applied to the atomic layer deposition (ALD) technique. In this literature, a novel combinatorial approach technique is utilized within an ALD grown simple metal oxide to synthesize a "spatially addressable combinatorial library". The two key factors in gradients were defined during the ALD process: (1) the process temperature and (2) a nonuniform flow of pulsed gases inside a cross-flow reactor. To validate the feasibility of our novel combinatorial approach, a case study of zinc oxide (ZnO), a simple metal oxide whose properties are well-known, is performed. Because of the induced gradient, the ZnO (002) crystallite size was found to gradually vary across a 100 mm wafer (∼10-20 nm) with a corresponding increase in the normalized Raman E2/A1 peak intensity ratio. The findings agree well with the visible grain size observed from scanning electron microscope. The novel combinatorial approach provides a means of systematical interpretation of the combined effect of the two gradients, especially in the analysis of the microstructure of ZnO crystals. Moreover, the combinatorial library reveals that the process temperature, rather than the crystal size, plays the most significant role in determining the electrical conductivity of ZnO.


Subject(s)
Nanostructures/chemistry , Zinc Oxide/chemistry , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Electric Conductivity
4.
Sci Rep ; 9(1): 6914, 2019 May 06.
Article in English | MEDLINE | ID: mdl-31061512

ABSTRACT

Nanodiamonds hosting colour centres are a promising material platform for various quantum technologies. The fabrication of non-aggregated and uniformly-sized nanodiamonds with systematic integration of single quantum emitters has so far been lacking. Here, we present a top-down fabrication method to produce 30.0 ± 5.4 nm uniformly-sized single-crystal nanodiamonds by block copolymer self-assembled nanomask patterning together with directional and isotropic reactive ion etching. We show detected emission from bright single nitrogen vacancy centres hosted in the fabricated nanodiamonds. The lithographically precise patterning of large areas of diamond by self-assembled masks and their release into uniformly sized nanodiamonds open up new possibilities for quantum information processing and sensing.

5.
ACS Appl Mater Interfaces ; 11(5): 5208-5214, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30652846

ABSTRACT

Increasing interest in the development of alternative energy storage technologies has led to efforts being taken to improve the energy density of dielectric capacitors with high power density. However, dielectric polymer materials still have low energy densities because of their low dielectric constant, whereas Pb-based materials are limited by environmental issues and regulations. Here, the energy storage behaviors of atomic layer-deposited Hf1- XZr XO2 ( X = 0-1) thin films (10 nm) and the phase transformation mechanism associated with an enhancement of their energy density are reported using unipolar pulse measurements. Based on electrical and material characterization, the energy density and energy efficiency are dependent on the Zr content, and stress-induced crystallization by the encapsulating Hf1- XZr XO2 films with TiN top electrodes prior to annealing can enhance the energy density (up to 47 J/cm3 at a small voltage value of 3.5 MV/cm) while minimizing energy loss even at low process temperatures (400 °C). This work will facilitate the realization of Hf1- XZr XO2-based capacitors for lead-free electrostatic energy storage applications.

6.
ACS Appl Mater Interfaces ; 10(51): 44825-44833, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30485061

ABSTRACT

Correlations between physical properties linking film quality with wet etch rate (WER), one of the leading figures of merit, in plasma-enhanced atomic layer deposition (PEALD) grown silicon nitride (SiN x) films remain largely unresearched. Achieving a low WER of a SiN x film is especially significant in its use as an etch stopper for technology beyond 7 nm node semiconductor processing. Herein, we explore the correlation between the hydrogen concentration, hydrogen bonding states, bulk film density, residual impurity concentration, and the WERs of PEALD SiN x using Fourier transform infrared spectrometry, X-ray reflectivity, and spectroscopic ellipsometry, etc. PEALD SiN x films for this study were deposited using hexachlorodisilane and hollow cathode plasma source under a range of process temperatures (270-360 °C) and plasma gas compositions (N2/NH3 or Ar/NH3) to understand the influence of hydrogen concentration, hydrogen bonding states, bulk film density, and residual impurity concentration on the WER. Varying hydrogen concentration and differences in the hydrogen bonding states resulted in different bulk film densities and, accordingly, a variation in WER. We observe a linear relationship between hydrogen bonding concentration and WER as well as a reciprocal relationship between bulk film density and WER. Analogous to the PECVD SiN x processes, a reduction in hydrogen bonding concentration arises from either (1) thermal activation or (2) plasma excited species. However, unlike the case with silane (SiH4)-based PECVD SiN x, PEALD SiN x WERs are affected by residual impurities of Si precursors (i.e., chlorine impurity). Thus, possible wet etching mechanisms in HF in which the WER is affected by hydrogen bonding states or residual impurities are proposed. The shifts of amine basicity in SiN x due to different hydrogen bonding states and the changes in Si electrophilicity due to Cl impurity content are suggested as the main mechanisms that influence WER in the PEALD processes.

7.
ACS Appl Mater Interfaces ; 10(16): 14116-14123, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29551067

ABSTRACT

In this work, a novel chlorodisilane precursor, pentachlorodisilane (PCDS, HSi2Cl5), was investigated for the growth of silicon nitride (SiN x) via hollow cathode plasma-enhanced atomic layer deposition (PEALD). A well-defined self-limiting growth behavior was successfully demonstrated over the growth temperature range of 270-360 °C. At identical process conditions, PCDS not only demonstrated approximately >20% higher growth per cycle than that of a commercially available chlorodisilane precursor, hexachlorodisilane (Si2Cl6), but also delivered a better or at least comparable film quality determined by characterizing the refractive index, wet etch rate, and density of the films. The composition of the SiN x films grown at 360 °C using PCDS, as determined by X-ray photoelectron spectroscopy, showed low O content (∼2 at. %) and Cl content (<1 at. %; below the detection limit). Fourier transform infrared spectroscopy spectra suggested that N-H bonds were the dominant hydrogen-containing bonds in the SiN x films without a significant amount of Si-H bonds originating from the precursor molecules. The possible surface reaction pathways of the PEALD SiN x using PCDS on the surface terminated with amine groups (-NH2 and -NH-) are proposed. The PEALD SiN x films grown using PCDS also exhibited a leakage current density as low as 1-2 nA/cm2 at 2 MV/cm and a breakdown electric field as high as ∼12 MV/cm.

SELECTION OF CITATIONS
SEARCH DETAIL
...