Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JBMR Plus ; 5(4): e10425, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33869985

ABSTRACT

Critical-sized bone defects are challenging to heal because of the sudden and large volume of lost bone. Fixative plates are often used to stabilize defects, yet oxidative stress and delayed angiogenesis are contributing factors to poor biocompatibility and delayed bone healing. This study tests the angiogenic and antioxidant properties of amorphous silicon oxynitrophosphide (SiONPx) nanoscale-coating material on endothelial cells to regenerate vascular tissue in vitro and in bone defects. in vitro studies evaluate the effect of silicon oxynitride (SiONx) and two different SiONPx compositions on human endothelial cells exposed to ROS (eg, hydrogen peroxide) that simulates oxidative stress conditions. in vivo studies using adult male Sprague Dawley rats (approximately 450 g) were performed to compare a bare plate, a SiONPx-coated implant plate, and a sham control group using a rat standard-sized calvarial defect. Results from this study showed that plates coated with SiONPx significantly reduced cell death, and enhanced vascular tubule formation and matrix deposition by upregulating angiogenic and antioxidant expression (eg, vascular endothelial growth factor A, angiopoetin-1, superoxide dismutase 1, nuclear factor erythroid 2-related factor 2, and catalase 1). Moreover, endothelial cell markers (CD31) showed a significant tubular structure in the SiONPx coating group compared with an empty and uncoated plate group. This reveals that atomic doping of phosphate into the nanoscale coating of SiONx produced markedly elevated levels of antioxidant and angiogenic markers that enhance vascular tissue regeneration. This study found that SiONPx or SiONx nanoscale-coated materials enhance antioxidant expression, angiogenic marker expression, and reduce ROS levels needed for accelerating vascular tissue regeneration. These results further suggest that SiONPx nanoscale coating could be a promising candidate for titanium plate for rapid and enhanced cranial bone-defect healing. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

2.
JBMR Plus ; 5(2): e10429, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33615102

ABSTRACT

Legg-Calvé-Perthes disease (LCPD) is a childhood ischemic osteonecrosis (ON) of the femoral head associated with the elevation of proinflammatory cytokine interleukin-6 (IL-6) in the synovial fluid. Currently, there is no effective medical therapy for patients with LCPD. In animal models of ischemic ON, articular chondrocytes produce IL-6 in response to ischemic ON induction and IL-6 receptor blockade improves bone healing. High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern released from dying cells. In addition, extracellular HMGB1 protein is a well-known proinflammatory cytokine elevated in the synovial fluid of patients with rheumatoid arthritis and osteoarthritis. The purpose of this study was to investigate IL-6-related proinflammatory cytokines, including HMGB1, in the synovial fluid of patients with LCPD. Our working hypothesis was that HMGB1, produced by articular chondrocytes following ischemic ON, plays an important role in IL-6 upregulation. Here, HMGB1 protein levels were significantly higher in the synovial fluid of patients with LCPD by threefold compared with controls (p < 0.05), and were highly correlated with IL-6 levels (Pearson correlation coefficient 0.94, p < 0.001, R 2 = 0.87). In the mouse model of ischemic ON, both HMGB1 gene expression and protein levels were elevated in the articular cartilage. In vitro studies revealed a significant elevation of HMGB1 and IL-6 proteins in the supernatants of human chondrocytes exposed to hypoxic and oxidative stresses. Overexpressed HMGB1 protein in the supernatants of chondrocytes synergistically increased IL-6 protein. Silencing HMGB1 RNA in human chondrocytes significantly repressed inteleukin-1ß (IL-1ß) gene expression, but not IL-6. Further, both IL-1ß and tumor necrosis factor-α (TNF-α) protein levels in the synovial fluid of patients with LCPD were significantly correlated with IL-6 protein levels. Taken together, these results suggest that proinflammatory cytokines, HMGB1, tumor necrosis factor-α (TNF-α), and IL-1ß, are significantly involved with IL-6 in the pathogenesis of LCPD. This study is clinically relevant because the availability of multiple therapeutic targets may improve the development of therapeutic strategy for LCPD. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

3.
J Bone Miner Res ; 36(2): 357-368, 2021 02.
Article in English | MEDLINE | ID: mdl-33053220

ABSTRACT

Legg-Calvé-Perthes disease (LCPD) is a juvenile form of ischemic femoral head osteonecrosis, which produces chronic hip synovitis, permanent femoral head deformity, and premature osteoarthritis. Currently, there is no medical therapy for LCPD. Interleukin-6 (IL-6) is significantly elevated in the synovial fluid of patients with LCPD. We hypothesize that IL-6 elevation promotes chronic hip synovitis and impairs bone healing after ischemic osteonecrosis. We set out to test if anti-IL-6 therapy using tocilizumab can decrease hip synovitis and improve bone healing in the piglet model of LCPD. Fourteen piglets were surgically induced with ischemic osteonecrosis and assigned to two groups: the no treatment group (n = 7) and the tocilizumab group (15 to 20 mg/kg, biweekly intravenous injection, n = 7). All animals were euthanized 8 weeks after the induction of osteonecrosis. Hip synovium and femoral heads were assessed for hip synovitis and bone healing using histology, micro-CT, and histomorphometry. The mean hip synovitis score and the number of synovial macrophages and vessels were significantly lower in the tocilizumab group compared with the no treatment group (p < .0001, p = .01, and p < .01, respectively). Micro-CT analysis of the femoral heads showed a significantly higher bone volume in the tocilizumab group compared with the no treatment group (p = .02). The histologic assessment revealed a significantly lower number of osteoclasts per bone surface (p < .001) in the tocilizumab group compared with the no treatment group. Moreover, fluorochrome labeling showed a significantly higher percent of mineralizing bone surface (p < .01), bone formation rate per bone surface (p < .01), and mineral apposition rate (p = .04) in the tocilizumab group. Taken together, tocilizumab therapy decreased hip synovitis and osteoclastic bone resorption and increased new bone formation after ischemic osteonecrosis. This study provides preclinical evidence that tocilizumab decreases synovitis and improves bone healing in a large animal model of LCPD. © 2020 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone Resorption , Legg-Calve-Perthes Disease , Osteonecrosis , Synovitis , Animals , Bone Resorption/drug therapy , Femur Head/diagnostic imaging , Humans , Osteogenesis , Swine
4.
J Orthop Res ; 37(8): 1784-1789, 2019 08.
Article in English | MEDLINE | ID: mdl-30977552

ABSTRACT

Legg-Calve-Perthes disease is characterized by the capital femoral epiphyseal collapse, which occurs more reliably in the anterior quadrant than the more weight-bearing lateral quadrant. The purpose of this study was to determine whether there is a vascular or microstructural predisposition for anterior femoral epiphyseal collapse in Perthes disease. Thirty-two cadaveric proximal femoral epiphyses from 17 subjects (age 4-14 years old) underwent micro-computed tomography at 10-µm resolution. Each quadrant was analyzed for four markers of trabecular architecture: bone volume fraction (BV/TV), trabecular thickness, trabecular separation (TbSp), and trabecular number (TbN). Vascular channels were then mapped in each quadrant, identified by correlating surface topography with cross-sectional imaging. One-way analysis of variance revealed an overall difference between quadrants (p < 0.001) in BV/TV, TbN, and TbSp. However, post hoc analysis revealed there was no significant difference between the anterior and lateral quadrants for any of the four markers of trabecular architecture. Vascular channel mapping illustrated a predominance of vessels in the posterior half of the epiphysis compared to the anterior half (8.7 ± 4.0 vs. 3.4 ± 3.1 vascular channels, p < 0.001). The lack of microstructural differences between the anterior and lateral quadrants, and the predominance of vascular channels in the posterior half of the epiphysis with posteriorly-based medial femoral circumflex and ligamentum teres vessels suggests that the anterior femoral epiphysis may be a relative vascular watershed region, which predisposes it to collapse after the vascular insult of Perthes disease. Clinical significance: Improved understanding of the pathophysiology of anterior femoral epiphyseal collapse may inform future treatments aimed at revascularization. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1784-1789, 2019.


Subject(s)
Cancellous Bone/pathology , Femur/pathology , Legg-Calve-Perthes Disease/pathology , Adolescent , Cancellous Bone/blood supply , Cancellous Bone/diagnostic imaging , Child , Child, Preschool , Epiphyses/blood supply , Epiphyses/diagnostic imaging , Epiphyses/pathology , Female , Femur/blood supply , Femur/diagnostic imaging , Humans , Legg-Calve-Perthes Disease/diagnostic imaging , Male , X-Ray Microtomography
5.
J Bone Miner Res ; 32(8): 1716-1726, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28425622

ABSTRACT

Neurofibromatosis type 1 (NF1, OMIM 162200), caused by NF1 gene mutations, exhibits multi-system abnormalities, including skeletal deformities in humans. Osteocytes play critical roles in controlling bone modeling and remodeling. However, the role of neurofibromin, the protein product of the NF1 gene, in osteocytes is largely unknown. This study investigated the role of neurofibromin in osteocytes by disrupting Nf1 under the Dmp1-promoter. The conditional knockout (Nf1 cKO) mice displayed serum profile of a metabolic bone disorder with an osteomalacia-like bone phenotype. Serum FGF23 levels were 4 times increased in cKO mice compared with age-matched controls. In addition, calcium-phosphorus metabolism was significantly altered (calcium reduced; phosphorus reduced; parathyroid hormone [PTH] increased; 1,25(OH)2 D decreased). Bone histomorphometry showed dramatically increased osteoid parameters, including osteoid volume, surface, and thickness. Dynamic bone histomorphometry revealed reduced bone formation rate and mineral apposition rate in the cKO mice. TRAP staining showed a reduced osteoclast number. Micro-CT demonstrated thinner and porous cortical bones in the cKO mice, in which osteocyte dendrites were disorganized as assessed by electron microscopy. Interestingly, the cKO mice exhibited spontaneous fractures in long bones, as found in NF1 patients. Mechanical testing of femora revealed significantly reduced maximum force and stiffness. Immunohistochemistry showed significantly increased FGF23 protein in the cKO bones. Moreover, primary osteocytes from cKO femora showed about eightfold increase in FGF23 mRNA levels compared with control cells. The upregulation of FGF23 was specifically and significantly inhibited by PI3K inhibitor Ly294002, indicating upregulation of FGF23 through PI3K in Nf1-deficient osteocytes. Taken together, these results indicate that Nf1 deficiency in osteocytes dramatically increases FGF23 production and causes a mineralization defect (ie, hyperosteoidosis) via the alteration of calcium-phosphorus metabolism. This study demonstrates critical roles of neurofibromin in osteocytes for osteoid mineralization. © 2017 American Society for Bone and Mineral Research.


Subject(s)
Bone Neoplasms , Fibroblast Growth Factors/metabolism , Neurofibromin 1/deficiency , Osteocytes , Osteoma, Osteoid , Osteomalacia , Animals , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/genetics , Humans , Mice , Mice, Knockout , Neurofibromatosis 1/genetics , Neurofibromatosis 1/metabolism , Neurofibromatosis 1/pathology , Osteocytes/metabolism , Osteocytes/pathology , Osteoma, Osteoid/genetics , Osteoma, Osteoid/metabolism , Osteoma, Osteoid/pathology , Osteomalacia/genetics , Osteomalacia/metabolism , Osteomalacia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...