Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37834678

ABSTRACT

In response to climate change, wood pellets have been increasingly utilized as a sustainable energy source. However, their growing utilization increases the production of wood pellet fly ash (WA) by-products, necessitating alternative recycling technologies due to a shortage of discharging landfills. Thus, this research seeks to utilize WA by developing a new sustainable construction material, called wood pellet fly ash blended binder (WABB), and to validate its stabilizing performance in natural soils, namely weathered granite soil (WS). WABB is made from 50% WA, 30% ground granulated blast-furnace slag (GGBS), and 20% cement by dry mass. WS was mixed with 5%, 15%, and 25% WABB and was tested for a series of unconfined compressive strength (qu), pH, and suction tests at 3, 7, 14, and 28 days. For the microstructural analyses, XRD, SEM, and EDS were employed. As the WABB dosage rate increased, the average qu increased by 1.88 to 11.77, which was higher than that of compacted WS without any binder. Newly cementitious minerals were also confirmed. These results suggest that the effects of the combined hydration mechanism of WABB are due to cement's role in facilitating early strength development, GGBS's latent hydraulic properties, and WA's capacity to stimulate the alkaline components of WABB and soil grains. Thus, this research validates a new sustainable binder, WABB, as a potential alternative to conventional soil stabilizers.

2.
Materials (Basel) ; 14(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34576514

ABSTRACT

Compared to the bottom ash obtained by a water-cooling system (wBA), dry process bottom ash (dBA) makes hardly any unburnt carbon because of its stay time at the bottom of the boiler and contains less chloride because there is no contact with seawater. Accordingly, to identify the chemical stability of dBA as a lightweight aggregate for construction purposes, the chemical properties of dBA were evaluated through the following process of the reviewing engineering properties of a lightweight aggregate (LWA). Typically, river gravel and crushed gravel have been used as coarse aggregates due to their physical and chemical stability. The coal ash and LWA, however, have a variety of chemical compositions, and they have specific chemical properties including SO3, unburnt coal and heavy metal content. As the minimum requirement to use the coal ash and lightweight aggregate with various chemical properties for concrete aggregate, the loss on ignition, the SO3 content and the amount of chloride should be examined, and it is also necessary to examine heavy metal leaching even though it is not included in the standard specifications in Korea. Based on the results, it is believed that there are no significant physical and chemical problems using dBA as a lightweight aggregate for concrete.

3.
Article in English | MEDLINE | ID: mdl-27483298

ABSTRACT

There has been increased deconstruction and demolition of reinforced concrete structures due to the aging of the structures and redevelopment of urban areas resulting in the generation of massive amounts of construction. The production volume of waste concrete is projected to increase rapidly over 100 million tons by 2020. However, due to the high cement paste content, recycled aggregates have low density and high absorption ratio. They are mostly used for land reclamation purposes with low added value instead of multiple approaches. This study was performed to determine an effective method to remove cement paste from recycled aggregates by using the abrasion and substituting the process water with acidic water. The aim of this study is to analyze the quality of the recycled fine aggregates produced by a complex method and investigate the optimum manufacturing conditions for recycled fine aggregates based on the design of experiment. The experimental parameters considered were water ratio, coarse aggregate ratio, and abrasion time and, as a result of the experiment, data concerning the properties of recycled sand were obtained. It was found that high-quality recycled fine aggregates can be obtained with 8.57 min of abrasion-crusher time and a recycled coarse aggregate ratio of over 1.5.


Subject(s)
Construction Materials , Industrial Waste/analysis , Quality Improvement , Recycling/methods , Sulfuric Acids/chemistry , Silicon Dioxide , Water
4.
Materials (Basel) ; 9(5)2016 May 07.
Article in English | MEDLINE | ID: mdl-28773470

ABSTRACT

CO2 emitted from building materials and the construction materials industry has reached about 67 million tons. Controls on the use of consumed fossil fuels and the reduction of emission gases are essential for the reduction of CO2 in the construction area as one reduces the second and third curing to emit CO2 in the construction materials industry. In this study, a new curing method was addressed by using a low energy curing admixture (LA) in order to exclude autoclave curing. The new curing method was applied to make panels. Then, its physical properties, depending on the mixed amount of fiber, type of fiber and mixed ratio of fiber, were observed. The type of fiber did not appear to be a main factor that affected strength, while the LA mixing ratio and mixing amount of fiber appeared to be major factors affecting the strength. Applying the proposed new curing method can reduce carbon and restrain the use of fossil fuels through a reduction of the second and third curing processes, which emit CO2 in the construction materials industry. Therefore, it will be helpful to reduce global warming.

5.
Materials (Basel) ; 9(7)2016 Jul 19.
Article in English | MEDLINE | ID: mdl-28773711

ABSTRACT

There have been frequent cases of civil complaints and disputes in relation to floor impact noises over the years. To solve these issues, a substantial amount of sound resilient material is installed between the concrete slab and the foamed concrete during construction. A new place-type resilient material is made from cement, silica powder, sodium sulfate, expanded-polystyrene, anhydrite, fly ash, and acrylic polymer emulsion resin. Its physical characteristics such as density, compressive strength, dynamic stiffness, and remanent strain are analyzed to assess the acoustic performance of the material. The experimental results showed the density and the dynamic stiffness of the proposed resilient material is increased with proportional to the use of cement and silica powder due to the high contents of the raw materials. The remanent strain, related to the serviceability of a structure, is found to be inversely proportional to the density and strength. The amount of reduction in the heavyweight impact noise is significant in a material with high density, high strength, and low remanent strain. Finally, specimen no. R4, having the reduction level of 3 dB for impact ball and 1 dB for bang machine in the single number quantity level, respectively, is the best product to obtain overall acoustic performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...