Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(15): 19121-19136, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38588341

ABSTRACT

Plate-type hollow black TiO2 (HL/BT) with a high NIR reflectance was fabricated for the first time as a LiDAR-detectable black material. A TiO2 layer was formed on commercial-grade glass by using the sol-gel method to obtain a plate-type structure. The glass template was then etched with hydrofluoric acid to form a hollow structure, and blackness was further achieved through NaBH4 reduction, which altered the oxidation state of TiO2 to black TixO2x-1 or Ti4+ to Ti3+ and Ti2+. The blackness of the HL/BT material was maintained by a novel approach that involved etching prior to reduction. The thickness of the TiO2 layer was controlled to maximize the NIR reflectance when applied as paint. The HL/BT material with a thickness of 140 nm (HL/BT140) showed a blackness (L*) of 13.3 and high NIR reflectance of 23.6% at a wavelength of 905 nm. This is attributed to the effective light reflection at the interface created by the TiO2 layer and the hollow structure. Plate-type HL/BT140 provides excellent spreadability, durability, and thermal stability in practical paint applications compared with sphere-type materials due to the higher contacting area to the applied surface, making it suitable for use as a LiDAR-detectable inorganic black pigment in autonomous environments.

2.
Food Chem X ; 22: 101329, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38623509

ABSTRACT

Yuzu (Citrus junos Sieb.) is a peel-edible fruit with a pleasant aroma, but its bitter taste can impact consumer appeal. In this study, an efficient enzymatic method reduced bitterness in green yuzu powder (GYP). Cellulase KN and naringinase from Aspergillus oryzae NYO-2 significantly decreased naringin and neohesperidin content by over 87 %, while increasing total dietary fiber and soluble dietary fiber by up to 10 % and 51 %, respectively. Insoluble dietary fiber decreased by up to 22 %. Cellulose, hemicellulose, lignin, and pectin contents in enzyme-treated YP decreased by 1.15-2.00-fold, respectively. Enzyme-treated GYP exhibited improved physicochemical properties, including enhanced solubility, oil-holding capacity, and water swelling capacities. 3T3-L1 cells treated with cellulase-treated GYP and naringinase-treated GYP showed lower lipid accumulation and higher lipolysis capability than GYP, along with decreased fatty acid synthase contents. These findings suggest that enzyme-treated GYP holds potential as a functional ingredient in the food industry.

3.
Food Chem ; 450: 139327, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38636380

ABSTRACT

Branched-chain amino acids (BCAAs) are vital components of human and animal nutrition that contribute to the building blocks of proteins. In this study, 170 protease-producing strains were isolated and screened from soy-fermented foods. Bacillus amyloliquefaciens NY130 was obtained from Cheonggukjang with high production of BCAAs. Optimal production of protease from B. amyloliquefaciens NY130 (protease NY130) was achieved at 42 °C and pH 6.0 for 21 h. It was purified and determined as 27- and 40 kDa. Protease NY130 showed maximum activity at pH 9.0 and 45 °C with Km value of 10.95 mg for ISP and 1.69 mg for WPI. Protease-treated ISP and WPI showed increased sweetness and saltiness via electronic tongue analysis and enhanced the protective effect against oxidative stress in C2C12 myocytes by increasing p-mTOR/mTOR protein expression to 160%. This work possesses potential in producing BCAAs by using protease for utilization in food.


Subject(s)
Amino Acids, Branched-Chain , Bacillus amyloliquefaciens , Peptide Hydrolases , Soybean Proteins , Bacillus amyloliquefaciens/metabolism , Bacillus amyloliquefaciens/chemistry , Amino Acids, Branched-Chain/metabolism , Amino Acids, Branched-Chain/chemistry , Peptide Hydrolases/metabolism , Peptide Hydrolases/chemistry , Soybean Proteins/chemistry , Soybean Proteins/metabolism , Animals , Mice , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Humans , Oxidative Stress/drug effects , Fermentation
4.
Appl Microbiol Biotechnol ; 108(1): 207, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353757

ABSTRACT

Compound K (CK), a ginsenoside with high bioavailability, is present at low levels in wild-simulated ginseng leaves (WSGL). WSGL contains the CK precursors, Rd and F2, in amounts up to 26.4 ± 0.4 and 24.1 ± 1.9 mg/g extract, respectively. In this study, CK production in WGSL reached 25.9 ± 1.0 mg/g extract following treatment with Viscozyme, Celluclast 1.5 L, Pectinex Ultra SP-L, and their combination. The antioxidant activities indicated by oxygen radical absorbance capacity, ferric reducing antioxidant power, and ABTS- and DPPH radical scavenging activity of enzyme-treated WSGL were enhanced 1.69-, 2.51-, 2.88-, and 1.80-fold, respectively, compared to non-treated WSGL. Furthermore, the CK-enriched WSGL demonstrated a 1.94-fold decrease in SA-ß-galactosidase expression in human dermal fibroblasts and a 3.8-fold enhancement of inhibition of nitric oxide release in lipopolysaccharide-induced RAW 264.7 cells relative to non-treated WSGL. Consequently, WSGL subjected to enzymatic upcycling has potential as a functional material in the food and pharmaceutical industries.


Subject(s)
Ginsenosides , Panax , Humans , Antioxidants/pharmacology , Ginsenosides/pharmacology , Plant Extracts/pharmacology
5.
J Colloid Interface Sci ; 657: 373-383, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38043239

ABSTRACT

HYPOTHESIS: Surface modification of dielectric materials changes the dipole-dipole interactions under electric fields, thereby controlling the electrorheological (ER) response. The introduction of metal oxides onto mica templates and further coating of dyes is expected to simultaneously improve the color clarity and ER performance. EXPERIMENTS: Dye-coated TiO2 platelets on mica are synthesized for high-performance colorful ER fluids. A sol-gel method is utilized to grow TiO2 on mica to prepare precursor light-colored mica/TiO2 materials, which are coated with appropriate dyes to enhance the vividness as determined by the Commission Internationale de clairage L*a*b* color system. The color expression and color clarity improvement are explained via the light interference effect and the presence of chromophores. FINDINGS: The uniform TiO2 layers can be obtained under low pH conditions with controlled nucleation kinetics. The addition of dyes to TiO2 increases the surface area and porosity of ER materials and introduces heteroatoms that act as positive factors. In practical ER applications, dye-coated TiO2-based ER fluids exhibit higher ER performances compared with the corresponding light-colored TiO2-based ER fluids. The vivid-colored ER fluids could provide an easy selection for a wide range of rheological systems requiring a specific magnitude of stress by confirming the color.

6.
Food Chem X ; 20: 100918, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144855

ABSTRACT

Enzymatic modifications have been applied in citrus to enhance their physicochemical and biological properties and reduce their bitterness. Notwithstanding, research on the combination of enzyme treatment of yuzu is lacking. In this study, yuzu was treated with a combination of isolated cellulase NY203, pectinase UF, and cellulase KN, and this enzymatic treatment was found to increase monosaccharide, naringenin, and hesperetin levels. In contrast, dietary fiber, cellulose, hemicellulose, lignin, and pectin levels were decreased. Moreover, the enzymes disintegrated the inner and outer surface structures and chemical bonding of yuzu, thus improving its solubility rate, water-holding capacity, oil-adsorption capacity, cholesterol-binding capacity, and water-swelling capacity. Furthermore, NY203 + UF + KN combination treatment reduced the bitterness of treated yuzu by 50 % compared with the control. Additionally, NY203 + UF + KN treatment yielded a 28 % decrease in lipid accumulation and two-fold higher lipolytic activity in 3T3L-1 adipocytes. These findings are potentially beneficial to the food/nutraceutical industries regarding functional yuzu powder production.

7.
Gels ; 9(11)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37998981

ABSTRACT

The use of plate-like materials to induce a percolation gel-like effect in electrorheological (ER) fluids is sparsely documented. Hence, we dispersed plate-like materials, namely natural mica, synthetic mica, and glass, as well as their pulverized particles, in various concentrations in silicone oil to form ER fluids. Subsequently, the rheological properties of the fluids were evaluated and compared to identify the threshold concentration for percolating a gel-like state. The shear stress and viscoelastic moduli under zero-field conditions confirmed that plate-like materials can be used to induce percolation gel-like effects in ER fluids. This is because of the high aspect ratio of the materials, which enhances their physical stability. In practical ER investigations, ER fluids based on synthetic mica (30.0 wt%) showed the highest yield stress of 516.2 Pa under an electric field strength of 3.0 kV mm-1. This was attributed to the formation of large-cluster networks and additional polarization induced by the ions. This study provides a practical approach for developing a new type of gel-like ER fluid.

8.
Materials (Basel) ; 16(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37834592

ABSTRACT

In this study, Al paper and cellulose acetate (CA) filters derived from heated tobacco waste were successfully converted into current collectors and active materials for a supercapacitor device. Typically, heated tobacco contains electrically discontinuous Al paper. First, Al was extracted from the tobacco waste using HCl to produce Lewis acid (AlCl3). This acid was then used in an Al electrodeposition process utilizing the chloroaluminate ionic liquid reaction between the acid and the base (RCl) at room temperature. To enhance the conductivity, a supplementary coating of Al metal was applied to the Al paper through electrodeposition, thus re-establishing the electrical continuity of the discontinuous parts and forming an Al-coated current collector. Moreover, the CA filters were carbonized under a nitrogen atmosphere, yielding carbon precursors (C-CA) for the supercapacitor electrodes. To further enhance the electrochemical performance, nickel oxide (NiO) was incorporated into C-CA, resulting in C-CA@NiO with pseudocapacitance. The specific surface area of CA increased with carbonization and the subsequent incorporation of NiO. The as-synthesized C-CA and C-CA@NiO materials were applied to an Al-coated current collector to obtain C-CA- and C-CA@NiO-based electrodes, exhibiting stable electrochemical behavior in the voltage range of -1.0 to 0 V and 0 to 1.0 V, respectively. An asymmetric supercapacitor (ASC) device was assembled with C-CA@NiO and C-CA as the positive and negative electrodes, respectively. This ASC device demonstrated a high specific capacitance of 40.8 F g-1, while widening the operating voltage window to 2.0 V. The high electrochemical performance of the device is attributed to the successful Al electrodeposition, which facilitates the electrical conductivity and increased porosity of the C-CA@NiO and C-CA materials. To the best of our knowledge, this is a pioneering study in regards to the conversion of biomass waste into current collectors and active materials to fabricate a practical ASC device. Our findings highlight the potential of reusing Al paper and CA filters from heated tobacco waste as essential components of energy storage devices.

9.
AMB Express ; 13(1): 94, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37689820

ABSTRACT

Solid-state fermentation (SSF) was used to enhance the bioactive compounds and biological properties of food materials, such as buckwheat, turmeric, and ginseng. This study was investigated the effects of SSF for up to 10 days using Rhizopus oligosporus on Yerba mate (Ilex paraguariensis St. Hilaire). The total phenolic content of Yerba mate rose to 20% after 1 day fermentation. The saponin contents of Yerba mate rose to 38% after 7 day fermentation. Furthermore, chlorogenic acid, caffeic acid, and caffeine levels were increased up to 27.74% by fermentation, as determined by UPLC-MS analysis. ORAC and FRAP assays showed that the antioxidant activities of Yerba mate were enhanced 1.9- and 1.14-fold after 1 day fermentation. In addition, its inhibitory activities against yeast α-glucosidase and nitric oxide release in LPS-stimulated RAW264.7 cells were higher than in the unfermented Yerba mate. Moreover, taste sensory analysis using an electronic tongue sensory system showed that the flavor of Yerba mate after 1 day fermentation was similar to that of the unfermented Yerba mate. These results suggested that solid fermentation using R. oligosporus is conducive to producing Yerba mate with enhanced biological properties.

10.
Appl Microbiol Biotechnol ; 107(20): 6205-6217, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37642718

ABSTRACT

Naringin found in citrus fruits is a flavanone glycoside with numerous biological activities. However, the bitterness, low water-solubility, and low bioavailability of naringin are the main issues limiting its use in the pharmaceutical and nutraceutical industries. Herein, a glucansucrase from isolated Leuconostoc citreum NY87 was used for trans-α-glucosylattion of naringin by using sucrose as substrate. Two naringin glucosides (O-α-D-glucosyl-(1'''' → 6″) naringin (compound 1) and 4'-O-α-D-glucosyl naringin (compound 2)) were purified and determined their structures by nuclear magnetic resonance. The optimization condition for the synthesis of compound 1 was obtained at 10 mM naringin, 200 mM sucrose, and 337.5 mU/mL at 28 °C for 24 h by response surface methodology method. Compound 1 and compound 2 showed 1896- and 3272 times higher water solubility than naringin. Furthermore, the bitterness via the human bitter taste receptor TAS2R39 displayed that compound 1 was reduced 2.9 times bitterness compared with naringin, while compound 2 did not express bitterness at 1 mM. Both compounds expressed higher neuroprotective effects than naringin on human neuroblastoma SH-SY5Y cells treated with 5 mM scopolamine based on cell viability and cortisol content. Compound 1 reduced acetylcholinesterase activity more than naringin and compound 2. These results indicate that naringin glucosides could be utilized as functional material in the nutraceutical and pharmaceutical industries. KEY POINTS: • A novel O-α-D-glucosyl-(1 → 6) naringin was synthesized using glucansucrase from L. citreum NY87. • Naringin glucosides improved water-solubility and neuroprotective effects on SH-SY5Y cells. • Naringin glucosides showed a decrease in bitterness on bitter taste receptor 39.


Subject(s)
Flavanones , Neuroblastoma , Neuroprotective Agents , Humans , Neuroprotective Agents/pharmacology , Solubility , Acetylcholinesterase , Flavanones/pharmacology , Sucrose/chemistry , Glucosides/pharmacology , Glucosides/chemistry , Water , Receptors, Cell Surface
11.
Nanomaterials (Basel) ; 13(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37242031

ABSTRACT

Herein, unique three-dimensional (3D) hierarchically structured carbon nanofiber (CNF)/metal oxide/conducting polymer composite materials were successfully synthesized by combinations of various experimental methods. Firstly, base CNFs were synthesized by carbonization of electrospun PAN/PVP fibers to attain electric double-layer capacitor (EDLC) characteristics. To further enhance the capacitance, tin oxide (SnO2) and iron oxide (Fe2O3) were coated onto the CNFs via facile hydrothermal treatment. Finally, polypyrrole (PPy) was introduced as the outermost layer by a dispersion polymerization method under static condition to obtain 3D-structured CNF/SnO2/PPy and CNF/Fe2O3/PPy materials. With each synthesis step, the morphology and dimension of materials were transformed, which also added the benign characteristic for supercapacitor application. For the practical application, as-synthesized CNF/SnO2/PPy and CNF/Fe2O3/PPy were applied as active materials for supercapacitor electrodes, and superb specific capacitances of 508.1 and 426.8 F g-1 (at 1 A g-1) were obtained (three-electrode system). Furthermore, an asymmetric supercapacitor (ASC) device was assembled using CNF/SnO2/PPy as the positive electrode and CNF/Fe2O3/PPy as the negative electrode. The resulting CNF/SnO2/PPy//CNF/Fe2O3/PPy device exhibited excellent specific capacitance of 101.2 F g-1 (at 1 A g-1). Notably, the ASC device displayed a long-term cyclability (at 2000 cycles) with a retention rate of 81.1%, compared to a CNF/SnO2//CNF/Fe2O3 device of 70.3% without an outermost PPy layer. By introducing the outermost PPy layer, metal oxide detachment from CNFs were prevented to facilitate long-term cyclability of electrodes. Accordingly, this study provides an effective method for manufacturing a high-performance and stable supercapacitor by utilizing unique 3D hierarchical materials, comprised of CNF, metal oxide, and conducting polymer.

12.
J Microbiol Biotechnol ; 33(6): 788-796, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-36994623

ABSTRACT

Canine parvovirus type 2 (CPV-2) has high morbidity and mortality rates in canines. Nonstructural protein 1 (NS1) of CPV-2 has endonuclease activity, initiates viral DNA replication, and is highly conserved. Thus, it is a promising target for antiviral inhibitor development. We overexpressed a 41.9 kDa active recombinant endonuclease in Escherichia coli and designed a nicking assay using carboxyfluorescein and quencher-linked ssDNA as substrates. The optimal temperature and pH of the endonuclease were 37°C and pH 7, respectively. Curcumin, bisdemethoxycurcumin, demethoxycurcumin, linoleic acid, tannic acid, and α-tocopherol inhibited CPV-2 NS1 endonuclease with IC50 values of 0.29 to 8.03 µM. The extracted turmeric, yerba mate, and sesame cake suppressed CPV-2 NS1 endonuclease with IC50 values of 1.48, 7.09, and 52.67 µg/ml, respectively. The binding affinity between curcumin, the strongest inhibitor, and CPV-2 NS1 endonuclease by molecular docking was -6.4 kcal/mol. Curcumin inhibited CPV-2 NS1 endonuclease via numerous hydrophobic interactions and two hydrogen bonds with Lys97 and Pro111 in the allosteric site. These results suggest that adding curcuminoids, linoleic acid, tannic acid, α-tocopherol, extracted turmeric, sesame cake, and yerba to the diet could prevent CPV-2 infection.


Subject(s)
Curcumin , Dog Diseases , Parvoviridae Infections , Parvovirus, Canine , Animals , Dogs , DNA Replication , Virus Replication , Endonucleases/genetics , Molecular Docking Simulation , Curcumin/pharmacology , Linoleic Acid , alpha-Tocopherol , Viral Nonstructural Proteins/genetics , DNA, Viral/genetics
13.
Int J Comput Dent ; 26(1): 37-47, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36825566

ABSTRACT

AIM: The present study aimed to evaluate the marginal and internal fit of lithium disilicate crowns at various locations. MATERIALS AND METHODS: A typodont maxillary left first molar was prepared for a lithium disilicate crown, scanned, and a master die fabricated. Three groups were created according to fabrication method (n = 10): conventional impression and press method (group C); scanning of definitive cast and milling method (group D); and intraoral scanning and milling method (group I). Assessment was performed using the triple-scan protocol. At the buccopalatal and mesiodistal sections, the absolute marginal discrepancy (AMD), marginal gap (MG), axial internal gap (AI), and line angle internal gap (LI) were measured. One-way analysis of variance (ANOVA) and post hoc Tukey HSD tests were used for statistical analysis (α = 0.05). RESULTS: AMD values were significantly lower in group C than in groups D and I (P < 0.05). MG values in group C were significantly lower than those in the buccal and distal areas in group D and all areas in group I (P < 0.05). AI values in the buccal and palatal areas in group D were significantly lower than those in the mesial and distal areas in group D and all areas in groups C and I (P < 0.05). LI values were significantly lower in group C than in groups D and I (P < 0.05). CONCLUSION: All three methods were clinically acceptable except for the marginal fit of the intraoral scanning and milling method, which was on the borderline of a clinically acceptable fit. (Int J Comput Dent 2023;26(1): 37-0; doi: 10.3290/j.ijcd.b3818305).


Subject(s)
Ceramics , Computer-Aided Design , Humans , Dental Prosthesis Design/methods , Dental Marginal Adaptation , Dental Impression Technique , Dental Porcelain , Crowns
14.
Gels ; 9(2)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36826267

ABSTRACT

In this study, a flexible all-solid-state asymmetric supercapacitor (FASC) device has been successfully fabricated via full recycling of heated tobacco waste (HTW). Tobacco leaves and cellulose acetate tubes have been successfully carbonized (HTW-C) and mixed with metal oxides (MnO2 and Fe3O4) to obtain highly active materials for supercapacitors. Moreover, poly(lactic acid) (PLA) filters have been successfully dissolved in an organic solvent and mixed with the as-prepared active materials using a simple paste mixing method. In addition, flexible MnO2- and Fe3O4-mixed HTW-C/PLA electrodes (C-MnO2/PLA and C-Fe3O4/PLA) have been successfully fabricated using the drop-casting method. The as-synthesized flexible C-MnO2/PLA and C-Fe3O4/PLA electrodes have exhibited excellent electrical conductivity of 378 and 660 µS cm-1, and high specific capacitance of 34.8 and 47.9 mF cm-2 at 1 mA cm-2, respectively. A practical FASC device (C-MnO2/PLA//C-Fe3O4/PLA) has been assembled by employing the C-MnO2/PLA as the positive electrode and C-Fe3O4/PLA as the negative electrode. The as-prepared FASC device showed a remarkable capacitance of 5.80 mF cm-2 at 1 mA cm-2. Additionally, the FASC device manifests stable electrochemical performance under harsh bending conditions, verifying the superb flexibility and sustainability of the device. To the best of our knowledge, this is the first study to report complete recycling of heated tobacco waste to prepare the practical FASC devices. With excellent electrochemical performance, the experiments described in this study successfully demonstrate the possibility of recycling new types of biomass in the future.

15.
J Agric Food Chem ; 71(3): 1655-1666, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36629749

ABSTRACT

Naringin is a flavanone glycoside in citrus fruits that has various biological functions. However, its bitterness affects the quality, economic value, and consumer acceptability of citrus products. Deglycosylation of naringin using naringinase decreases its bitterness and enhances its functional properties. In this study, eight microbial strains with naringinase activity were isolated from 33 yuzu-based fermented foods. Among them, naringinase from Aspergillus oryzae NYO-2, having the highest activity, was used to produce prunin and naringenin. Under optimal conditions, 19 mM naringin was converted to 14.06 mM prunin and 1.97 mM naringenin. The bitterness of prunin and naringenin was significantly decreased compared to naringin using the human bitter taste receptor TAS2R39. The neuroprotective effects of prunin and naringenin on human neuroblastoma SH-SY5Y cells treated with scopolamine were greater than that of naringin. These findings can widen the potential applications of deglycosylation of naringin to improve sensory and functional properties.


Subject(s)
Aspergillus oryzae , Flavanones , Neuroblastoma , Humans , Flavanones/pharmacology , Receptors, Cell Surface
16.
Nanomaterials (Basel) ; 12(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36296878

ABSTRACT

Light detection and ranging (LiDAR) sensors utilize a near-infrared (NIR) laser with a wavelength of 905 nm. However, LiDAR sensors have weakness in detecting black or dark-tone materials with light-absorbing properties. In this study, SiO2/black TiO2 core/shell nanoparticles (SBT CSNs) were designed as LiDAR-detectable black materials. The SBT CSNs, with sizes of 140, 170, and 200 nm, were fabricated by a series of Stöber, TTIP sol-gel, and modified NaBH4 reduction methods. These SBT CSNs are detectable by a LiDAR sensor and, owing to their core/shell structure with intrapores on the shell (ca. 2−6 nm), they can effectively function as both color and NIR-reflective materials. Moreover, the LiDAR-detectable SBT CSNs exhibited high NIR reflectance (28.2 R%) in a monolayer system and true blackness (L* < 20), along with ecofriendliness and hydrophilicity, making them highly suitable for use in autonomous vehicles.

17.
Nanomaterials (Basel) ; 12(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36144903

ABSTRACT

Herein, the electrorheological (ER) performances of ER fluids were correlated with their colors to allow for the visual selection of the appropriate fluid for a specific application using naked eyes. A series of TiO2-coated synthetic mica materials colored white, yellow, red, violet, blue, and green (referred to as color mica/TiO2 materials) were fabricated via a facile sol-gel method. The colors were controlled by varying the thickness of the TiO2 coating layer, as the coatings with different thicknesses exhibited different light interference effects. The synthesized color mica/TiO2 materials were mixed with silicone oil to prepare colored ER fluids. The ER performances of the fluids decreased with increasing thickness of the TiO2 layer in the order of white, yellow, red, violet, blue, and green materials. The ER performance of differently colored ER fluids was also affected by the electrical conductivity, dispersion stability, and concentrations of Na+ and Ca2+ ions. This pioneering study may provide a practical strategy for developing new ER fluid systems in future.

18.
Enzyme Microb Technol ; 161: 110111, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35961060

ABSTRACT

Fisetin (7,3',4'-flavon-3-ol) is a flavonol found in plants, fruits, and vegetables. It exhibits diverse biological activities, including antioxidant, anti-inflammatory, and anti-cancer effects. However, the low water solubility and bioavailability of fisetin restrict its pharmaceutical applications. In this work, we synthesized a novel fisetin-4'-O-α-D-glucopyranoside (FST-G1) using transglucosylation with sucrose, fisetin, and dextransucrase from Leuconostoc mesenteroides NRRL B-1299CB4. The water solubility of FST-G1 (109.8 ± 6.3 mg/L) was enhanced compared to fisetin (13.6 ± 1.3 mg/L). The antioxidant activities of FST-G1 in non-cellular assays, including ORAC, ABTS•+, and FRAP assays, were lower compared to fisetin. However, FST-G1 exhibited higher nitric oxide inhibition (62.5 µM; 92.3 %) in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells compared to fisetin (81.4 %). Anti-lipid accumulation in mouse 3T3-L1 cells treated with FST-G1 was similar to that in cells treated with fisetin. Taken together, the novel synthesized FST-G1 is expected to become a promising functional material for using in the pharmaceutical industry.


Subject(s)
Leuconostoc mesenteroides , Animals , Antioxidants/pharmacology , Flavonols , Glucosides/chemistry , Glucosyltransferases/chemistry , Leuconostoc , Mice , Solubility , Water
19.
Food Sci Biotechnol ; 31(7): 857-865, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35720467

ABSTRACT

Schisandra chinensis (Omija) is a well-known medicinal plant in East Asia. In this study, Omija oligosaccharide syrup was prepared from sucrose with Omija fruit extract using two glucansucrases of Leuconostoc mesenteroides B-512F/KM and L. mesenteroides B-1355CF10/KM. The degree of polymerization of Omija oligosaccharide syrup was ranged from 2 - 13 by MALDI-TOF-MS analysis. Compared to the Omija syrup, the Omija oligosaccharide syrup reduced 61% calories based on the enzymatic gravimetric method. It also reduced up to 96% insoluble glucan formation from sucrose by mutansucrase of Streptococcus mutans at 500 mg/mL. Additionally, it has 1.78-fold higher oxygen radical absorbance capacity value compared to Omija syrup. Using electronic tongue sensor system, Omija oligosaccharide syrup showed decreased sourness, astringency, and saltiness compared to Omija syrup. Thus, Omija oligosaccharides can be used as functional sweetener in nutraceutical industries. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01061-8.

20.
Enzyme Microb Technol ; 159: 110065, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35567857

ABSTRACT

This study aimed to enhance the water solubility and antioxidant properties of mangiferin by transglucosylation using cyclodextrin glycosyltransferase (CGTase) from Thermoanaerobacter sp. The highest mangiferin to mangiferin glucoside conversion yield achieved was 88.9% using 60 mU/mL CGTase, 25 mM mangiferin, and 10% starch (w/v), with incubation at 60 °C for 10 h. The product of transglucosylation was purified and its chemical structure was determined to be glucosyl-α-(1→4)-mangiferin (MGF-g1) using matrix-assisted laser desorption ionization time-of-flight mass spectrometry and nuclear magnetic resonance spectroscopy. The water solubility of MGF-g1 was 5,093 times higher than that of mangiferin. MGF-g1 exhibited 1.6-fold higher 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, 1.24-fold higher oxygen radical antioxidant capacity, and 1.19-fold higher ferric reducing ability power, compared to mangiferin. Moreover, the cyclooxygenase-2 inhibitory activity (IC50) of mangiferin and MGF-g1 were 76.44 ± 11.7 µM and 59.74 ± 2.8 µM, respectively. Our results suggest that the novel MGF-g1 has potential applications as a functional material in the food and pharmaceutical industries.


Subject(s)
Antioxidants , Water , Antioxidants/pharmacology , Glucosyltransferases , Solubility , Xanthones
SELECTION OF CITATIONS
SEARCH DETAIL
...