Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(5)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36904043

ABSTRACT

Kaempferia parviflora Wall. ex Baker (Zingiberaceae), commonly known as Thai ginseng or black ginger, is a tropical medicinal plant in many regions. It has been traditionally used to treat various ailments, including ulcers, dysentery, gout, allergies, abscesses, and osteoarthritis. As part of our ongoing phytochemical study aimed at discovering bioactive natural products, we investigated potential bioactive methoxyflavones from K. parviflora rhizomes. Phytochemical analysis aided by liquid chromatography-mass spectrometry (LC-MS) led to the isolation of six methoxyflavones (1-6) from the n-hexane fraction of the methanolic extract of K. parviflora rhizomes. The isolated compounds were structurally determined to be 3,7-dimethoxy-5-hydroxyflavone (1), 5-hydroxy-7-methoxyflavone (2), 7,4'-dimethylapigenin (3), 3,5,7-trimethoxyflavone (4), 3,7,4'-trimethylkaempferol (5), and 5-hydroxy-3,7,3',4'-tetramethoxyflavone (6), based on NMR data and LC-MS analysis. All of the isolated compounds were evaluated for their anti-melanogenic activities. In the activity assay, 7,4'-dimethylapigenin (3) and 3,5,7-trimethoxyflavone (4) significantly inhibited tyrosinase activity and melanin content in IBMX-stimulated B16F10 cells. In addition, structure-activity relationship analysis revealed that the methoxy group at C-5 in methoxyflavones is key to their anti-melanogenic activity. This study experimentally demonstrated that K. parviflora rhizomes are rich in methoxyflavones and can be a valuable natural resource for anti-melanogenic compounds.

2.
Phytochem Anal ; 28(5): 416-423, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28444808

ABSTRACT

INTRODUCTION: Anthocyanins are potent antioxidant agents that protect against many degenerative diseases; however, they are unstable because they are vulnerable to external stimuli including temperature, pH and light. This vulnerability hinders the quality control of anthocyanin-containing berries using classical high-performance liquid chromatography (HPLC) analytical methodologies based on UV or MS chromatograms. OBJECTIVE: To develop an alternative approach for the quality assessment and discrimination of anthocyanin-containing berries, we used MS spectral data acquired in a short analytical time rather than UV or MS chromatograms. METHOD: Mixtures of anthocyanins were separated from other components in a short gradient time (5 min) due to their higher polarity, and the representative MS spectrum was acquired from the MS chromatogram corresponding to the mixture of anthocyanins. RESULTS: The chemometric data from the representative MS spectra contained reliable information for the identification and relative quantification of anthocyanins in berries with good precision and accuracy. CONCLUSION: This fast and simple methodology, which consists of a simple sample preparation method and short gradient analysis, could be applied to reliably discriminate the species and geographical origins of different anthocyanin-containing berries. These features make the technique useful for the food industry. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Anthocyanins/analysis , Fruit/chemistry , Chromatography, High Pressure Liquid , Mass Spectrometry
3.
Bioorg Chem ; 66: 97-101, 2016 06.
Article in English | MEDLINE | ID: mdl-27060627

ABSTRACT

The bark of Betula platyphylla var. japonica (Betulaceae) has been used to treat pneumonia, choloplania, nephritis, and chronic bronchitis. This study aimed to investigate the bioactive chemical constituents of the bark of B. platyphylla var. japonica. A bioassay-guided fractionation and chemical investigation of the bark of B. platyphylla var. japonica resulted in the isolation and identification of a new lupane-type triterpene, 27-hydroxybetunolic acid (1), along with 18 known triterpenoids (2-19). The structure of the new compound (1) was elucidated on the basis of 1D and 2D NMR spectroscopic data analysis as well as HR-ESIMS. Among the known compounds, chilianthin B (17), chilianthin C (18), and chilianthin A (19) were triterpene-lignan esters, which are rarely found in nature. Compounds 4, 6, 7, 17, 18, and 19 showed significant antioxidant activities with IC50 values in the range 4.48-43.02µM in a DPPH radical-scavenging assay. However, no compound showed significant inhibition of acetylcholine esterase (AChE). Unfortunately, the new compound (1) exhibited no significance in both biological activities. This study strongly suggests that B. platyphylla var. japonica bark is a potential source of natural antioxidants for use in pharmaceuticals and functional foods.


Subject(s)
Antioxidants/isolation & purification , Betula/chemistry , Cholinesterase Inhibitors/isolation & purification , Plant Bark/chemistry , Plant Extracts/chemistry , Terpenes/isolation & purification , Acetylcholinesterase/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Humans , Molecular Structure , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Structure-Activity Relationship , Terpenes/chemistry , Terpenes/pharmacology
4.
J Ginseng Res ; 40(1): 62-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26843823

ABSTRACT

BACKGROUND: Ginseng, which is widely used in functional foods and as an herbal medicine, has been reported to reduce the proliferation of prostate cancer cells by mechanisms that are not yet fully understood. METHODS: This study was designed to investigate the changes in ginsenoside content in ginseng after treatment with a microwave-irradiation thermal process and to verify the anticancer effects of the extracts. To confirm the anticancer effect of microwave-irradiated processed ginseng (MG), it was tested in three human prostate cancer cell lines (DU145, LNCaP, and PC-3 cells). Involvements of apoptosis and autophagy were assessed using Western blotting. RESULTS: After microwave treatment, the content of ginsenosides Rg1, Re, Rb1, Rc, Rb2, and Rd in the extracts decreased, whereas the content of ginsenosides 20(S)-Rg3, 20(R)-Rg3, Rk1, and Rg5 increased. Antiproliferation results for the human cancer cell lines treated with ginseng extracts indicate that PC-3 cells treated with MG showed the highest activity with an half maximal inhibitory concentration of 48 µg/mL. We also showed that MG suppresses the growth of human prostate cancer cell xenografts in athymic nude mice as an in vivo model. This growth suppression by MG is associated with the inductions of cell death and autophagy. CONCLUSION: Therefore, heat processing by microwave irradiation is a useful method to enhance the anticancer effect of ginseng by increasing the content of ginsenosides Rg3, Rg5, and Rk1.

5.
J Agric Food Chem ; 63(25): 5964-9, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26050847

ABSTRACT

Although cisplatin can dramatically improve the survival rate in cancer patients, its use is limited by its nephrotoxicity. Previous investigations showed that Panax ginseng contains components that exhibit protective activity against cisplatin-induced nephropathy. The aim of the present study is to investigate the effect of microwave-assisted processing on the protective effect of ginseng and identify ginsenosides that are active against cisplatin-induced kidney damage to evaluate the potential of using ginseng in the management of nephrotoxicity. The LLC-PK1 cell damage by cisplatin was significantly decreased by treatment with microwave-processed ginseng (MG) and ginsenosides Rg3, Rg5, and Rk1. Reduced expression of p53 and c-Jun N-terminal kinase proteins by cisplatin in LLC-PK1 cells was markedly ameliorated after Rg3 and Rg5/Rk1 treatment. Additionally, elevated expression of cleaved caspase-3 was significantly reduced by ginsenosides Rg5, Rk1, and with even greater potency, Rg3. Moreover, MG and its fraction containing active ginsenosides showed protective effects against cisplatin-induced nephropathy in mice. We found that ginsenosides Rg3, Rg5, and Rk1 generated during the heat treatment of ginseng ameliorate renal damage by regulating inflammation and apoptosis. Results of current experiments provide evidence of the renoprotective effects and therapeutic potential of MG and its active ginsenosides, both in vitro and in vivo.


Subject(s)
Cisplatin/toxicity , Ginsenosides/administration & dosage , Kidney Diseases/prevention & control , Panax/chemistry , Protective Agents/administration & dosage , Animals , Caspase 3/genetics , Caspase 3/metabolism , Cell Line , Ginsenosides/pharmacology , Humans , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Kidney/drug effects , Kidney/injuries , Kidney Diseases/etiology , Kidney Diseases/genetics , Kidney Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Protective Agents/pharmacology , Swine
6.
J Ginseng Res ; 38(1): 22-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24558306

ABSTRACT

BACKGROUND: Research has been conducted with regard to the development of methods for improving the pharmaceutical effect of ginseng by conversion of ginsenosides, which are the major active components of ginseng, via high temperature or high-pressure processing. METHODS: The present study sought to investigate the anticancer effect of heat-processed American ginseng (HAG) in human gastric cancer AGS cells with a focus on assessing the role of apoptosis as an important mechanistic element in its anticancer actions. RESULTS AND CONCLUSION: HAG significantly reduced the cancer cell proliferation, and the contents of ginsenosides Rb1 and Re were markedly decreased, whereas the peaks of less-polar ginsenosides [20(S,R)-Rg3, Rk1, and Rg5] were newly detected. Based on the activity-guided fractionation of HAG, ginsenoside 20(S)-Rg3 played a key role in inducing apoptosis in human gastric cancer AGS cells, and it was generated mainly from ginsenoside Rb1. Ginsenoside 20(S)-Rg3 induced apoptosis through activation of caspase-3, caspase-8, and caspase-9, as well as regulation of Bcl-2 and Bax expression. Taken together, these findings suggest that heat-processing serves as an increase in the antitumor activity of American ginseng in AGS cells, and ginsenoside 20(S)-Rg3, the active component produced by heat-processing, induces the activation of caspase-3, caspase-8, and caspase-9, which contributes to the apoptotic cell death.

SELECTION OF CITATIONS
SEARCH DETAIL
...