Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38005645

ABSTRACT

Deep learning technology is generally applied to analyze periodic data, such as the data of electromyography (EMG) and acoustic signals. Conversely, its accuracy is compromised when applied to the anomalous and irregular nature of the data obtained using a magneto-impedance (MI) sensor. Thus, we propose and analyze a deep learning model based on recurrent neural networks (RNNs) optimized for the MI sensor, such that it can detect and classify data that are relatively irregular and diverse compared to the EMG and acoustic signals. Our proposed method combines the long short-term memory (LSTM) and gated recurrent unit (GRU) models to detect and classify metal objects from signals acquired by an MI sensor. First, we configured various layers used in RNN with a basic model structure and tested the performance of each layer type. In addition, we succeeded in increasing the accuracy by processing the sequence length of the input data and performing additional work in the prediction process. An MI sensor acquires data in a non-contact mode; therefore, the proposed deep learning approach can be applied to drone control, electronic maps, geomagnetic measurement, autonomous driving, and foreign object detection.

2.
Adv Sci (Weinh) ; 10(35): e2303728, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37840396

ABSTRACT

Intuitive and perceptual neuroprosthetic systems require a high degree of neural control and a variety of sensory feedback, but reliable neural interfaces for long-term use that maintain their functionality are limited. Here, a novel hybrid bionic interface is presented, fabricated by integrating a biological interface (regenerative peripheral nerve interface (RPNI)) and a peripheral neural interface to enhance the neural interface performance between a nerve and bionic limbs. This interface utilizes a shape memory polymer buckle that can be easily implanted on a severed nerve and make contact with both the nerve and the muscle graft after RPNI formation. It is demonstrated that this interface can simultaneously record different signal information via the RPNI and the nerve, as well as stimulate them separately, inducing different responses. Furthermore, it is shown that this interface can record naturally evoked signals from a walking rabbit and use them to control a robotic leg. The long-term functionality and biocompatibility of this interface in rabbits are evaluated for up to 29 weeks, confirming its promising potential for enhancing prosthetic control.


Subject(s)
Bionics , Peripheral Nerves , Animals , Rabbits , Electromyography , Peripheral Nerves/physiology , Prostheses and Implants , Nerve Regeneration/physiology
3.
Sensors (Basel) ; 21(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209945

ABSTRACT

The efficiency of the metal detection method using deep learning with data obtained from multiple magnetic impedance (MI) sensors was investigated. The MI sensor is a passive sensor that detects metal objects and magnetic field changes. However, when detecting a metal object, the amount of change in the magnetic field caused by the metal is small and unstable with noise. Consequently, there is a limit to the detectable distance. To effectively detect and analyze this distance, a method using deep learning was applied. The detection performances of a convolutional neural network (CNN) and a recurrent neural network (RNN) were compared from the data extracted from a self-impedance sensor. The RNN model showed better performance than the CNN model. However, in the shallow stage, the CNN model was superior compared to the RNN model. The performance of a deep-learning-based (DLB) metal detection network using multiple MI sensors was compared and analyzed. The network was detected using long short-term memory and CNN. The performance was compared according to the number of layers and the size of the metal sheet. The results are expected to contribute to sensor-based DLB detection technology.


Subject(s)
Neural Networks, Computer , Electric Impedance
4.
Sensors (Basel) ; 21(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806263

ABSTRACT

In this paper, we propose a detection method for salient objects whose eyes are focused on gaze tracking; this method does not require a device in a single image. A network was constructed using Neg-Region Attention (NRA), which predicts objects with a concentrated line of sight using deep learning techniques. The existing deep learning-based method has an autoencoder structure, which causes feature loss during the encoding process of compressing and extracting features from the image and the decoding process of expanding and restoring. As a result, a feature loss occurs in the area of the object from the detection results, or another area is detected as an object. The proposed method, that is, NRA, can be used for reducing feature loss and emphasizing object areas with encoders. After separating positive and negative regions using the exponential linear unit activation function, converted attention was performed for each region. The attention method provided without using the backbone network emphasized the object area and suppressed the background area. In the experimental results, the proposed method showed higher detection results than the conventional methods.


Subject(s)
Eye-Tracking Technology , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...