Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
PNAS Nexus ; 2(6): pgad171, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37275261

ABSTRACT

Multiplex immunofluorescence (mIF) assays multiple protein biomarkers on a single tissue section. Recently, high-plex CODEX (co-detection by indexing) systems enable simultaneous imaging of 40+ protein biomarkers, unlocking more detailed molecular phenotyping, leading to richer insights into cellular interactions and disease. However, high-plex data can be slower and more costly to collect, limiting its applications, especially in clinical settings. We propose a machine learning framework, 7-UP, that can computationally generate in silico 40-plex CODEX at single-cell resolution from a standard 7-plex mIF panel by leveraging cellular morphology. We demonstrate the usefulness of the imputed biomarkers in accurately classifying cell types and predicting patient survival outcomes. Furthermore, 7-UP's imputations generalize well across samples from different clinical sites and cancer types. 7-UP opens the possibility of in silico CODEX, making insights from high-plex mIF more widely available.

2.
Nat Biomed Eng ; 6(12): 1435-1448, 2022 12.
Article in English | MEDLINE | ID: mdl-36357512

ABSTRACT

Multiplexed immunofluorescence imaging allows the multidimensional molecular profiling of cellular environments at subcellular resolution. However, identifying and characterizing disease-relevant microenvironments from these rich datasets is challenging. Here we show that a graph neural network that leverages spatial protein profiles in tissue specimens to model tumour microenvironments as local subgraphs captures distinctive cellular interactions associated with differential clinical outcomes. We applied this spatial cellular-graph strategy to specimens of human head-and-neck and colorectal cancers assayed with 40-plex immunofluorescence imaging to identify spatial motifs associated with cancer recurrence and with patient survival after treatment. The graph deep learning model was substantially more accurate in predicting patient outcomes than deep learning approaches that model spatial data on the basis of the local composition of cell types, and it generated insights into the effect of the spatial compartmentalization of tumour cells and granulocytes on patient prognosis. Local graphs may also aid in the analysis of disease-relevant motifs in histology samples characterized via spatial transcriptomics and other -omics techniques.


Subject(s)
Deep Learning , Humans , Tumor Microenvironment , Neural Networks, Computer , Gene Expression Profiling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...