Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(20): 12771-12780, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38708928

ABSTRACT

Three-dimensional (3D) plasmonic metamaterials, featuring well-arranged subwavelength nanostructures, facilitate effective coupling between electrical dipoles and incident electromagnetic waves. This coupling allows for unique optical responses including localized surface plasmon resonance (LSPR) and quasi-bound states in the continuum (q-BIC). While 3D plasmonic metamaterials with LSPR and q-BIC have been independently explored for sensors, achieving simultaneous optical responses in the near-infrared region remains challenging. Here, we present 3D plasmonic metamaterials that integrate LSPR and q-BIC within a single π-shaped plasmonic structure, fabricated using a 3D aerosol nanoprinting technique. This printing technique controls the local electrostatic field to precisely position charged metallic nanoaerosols, enabling parallel printing of π-shaped plasmonic structures under ambient conditions. The printed π-shaped plasmonic structures exhibit two distinct optical modes: x-polarization-sensitive LSPR and transverse magnetic mode-sensitive q-BIC within the near-infrared region. Exploiting these dual optical responses, we demonstrate simultaneous polarization detection and incident angle analysis by integrating the π-shaped plasmonic structures into commercial Fourier-transform infrared spectroscopy, termed "numerical aperture-detective polarimetry". This approach holds promise for evaluating alignment in optical and imaging systems with light distribution analysis. Furthermore, the 3D aerosol nanoprinting technique provides an avenue for fabricating 3D plasmonic metamaterials with intricate geometries and optical properties, expanding their potential applications in nano-optics.

2.
Microsyst Nanoeng ; 10: 53, 2024.
Article in English | MEDLINE | ID: mdl-38654843

ABSTRACT

Nanoimprint lithography (NIL) has been utilized to address the manufacturing challenges of high cost and low throughput for optical metasurfaces. To overcome the limitations inherent in conventional imprint resins characterized by a low refractive index (n), high-n nanocomposites have been introduced to directly serve as meta-atoms. However, comprehensive research on these nanocomposites is notably lacking. In this study, we focus on the composition of high-n zirconium dioxide (ZrO2) nanoparticle (NP) concentration and solvents used to produce ultraviolet (UV) metaholograms and quantify the transfer fidelity by the measured conversion efficiency. The utilization of 80 wt% ZrO2 NPs in MIBK, MEK, and acetone results in conversion efficiencies of 62.3%, 51.4%, and 61.5%, respectively, at a wavelength of 325 nm. The analysis of the solvent composition and NP concentration can further enhance the manufacturing capabilities of high-n nanocomposites in NIL, enabling potential practical use of optical metasurfaces.

3.
Nat Food ; 5(4): 293-300, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38575840

ABSTRACT

Sustainability, humidity sensing and product origin are important features of food packaging. While waste generated from labelling and packaging causes environmental destruction, humidity can result in food spoilage during delivery and counterfeit-prone labelling undermines consumer trust. Here we introduce a food label based on a water-soluble nanocomposite ink with a high refractive index that addresses these issues. By patterning the nanocomposite ink using nanoimprint lithography, the resultant metasurface shows bright and vivid structural colours. This method makes it possible to quickly and inexpensively create patterns on large surfaces. A QR code is also developed that can provide up-to-date information on food products. Microprinting hidden in the QR code protects against counterfeiting, cannot be physically detached or replicated and may be used as a humidity indicator. Our proposed food label can reduce waste while ensuring customers receive accurate product information.


Subject(s)
Food Labeling , Food Packaging , Water , Food Packaging/standards , Food Labeling/legislation & jurisprudence , Water/chemistry , Nanocomposites/chemistry , Ink , Solubility , Humidity , Fraud/prevention & control
4.
Small ; 19(47): e2303749, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37480180

ABSTRACT

Metamolecule clusters support various unique types of artificial electromagnetism at optical frequencies. However, the technological challenges regarding the freeform fabrication of freestanding metamolecule clusters with programmed geometries and multiple compositions remain unresolved. Here, the freeform, freestanding raspberry-like metamolecule (RMM) fibers based on the directional guidance of a femtoliter meniscus are presented, resulting in the evaporative co-assembly of silica nanoparticles and gold nanoparticles with the aid of 3D nanoprinting. This method offers a facile and universal pathway to shape RMM fibers in 3D, enabling versatile manipulation of near- and far-field characteristics. In particular, the authors demonstrate the ability to decrease the scattering of the millimeter-scale RMM fiber in visible spectrum. In addition, the influence of electric and magnetic dipole modes on the directional scattering of RMM fibers is investigated. These experiments show that the magnetic response of an individual RMM can be controlled by adjusting the filling factor of gold nanoparticles. The authors anticipate that this method will allow for unrestricted design and realization of nanophotonic structures, surpassing the limitations of conventional fabrication processes.

5.
Light Sci Appl ; 12(1): 152, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37339970

ABSTRACT

Metasurfaces have been continuously garnering attention in both scientific and industrial fields, owing to their unprecedented wavefront manipulation capabilities using arranged subwavelength artificial structures. To date, research has mainly focused on the full control of electromagnetic characteristics, including polarization, phase, amplitude, and even frequencies. Consequently, versatile possibilities of electromagnetic wave control have been achieved, yielding practical optical components such as metalenses, beam-steerers, metaholograms, and sensors. Current research is now focused on integrating the aforementioned metasurfaces with other standard optical components (e.g., light-emitting diodes, charged-coupled devices, micro-electro-mechanical systems, liquid crystals, heaters, refractive optical elements, planar waveguides, optical fibers, etc.) for commercialization with miniaturization trends of optical devices. Herein, this review describes and classifies metasurface-integrated optical components, and subsequently discusses their promising applications with metasurface-integrated optical platforms including those of augmented/virtual reality, light detection and ranging, and sensors. In conclusion, this review presents several challenges and prospects that are prevalent in the field in order to accelerate the commercialization of metasurfaces-integrated optical platforms.

6.
Adv Mater ; 35(32): e2300229, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37093776

ABSTRACT

Obtaining single-molecular-level fingerprints of biomolecules and electron-transfer dynamic imaging in living cells are critically demanded in postgenomic life sciences and medicine. However, the possible solution called plasmonic resonance energy transfer (PRET) spectroscopy remains challenging due to the fixed scattering spectrum of a plasmonic nanoparticle and limited multiplexing. Here, multiplexed metasurfaces-driven PRET hyperspectral imaging, to probe biological light-matter interactions, is reported. Pixelated metasurfaces with engineered scattering spectra are first designed over the entire visible range by the precision nanoengineering of gap plasmon and grating effects of metasurface clusters. Pixelated metasurfaces are created and their full dark-field coloration is optically characterized with visible color palettes and high-resolution color printings of the art pieces. Furthermore, three different biomolecules (i.e., chlorophyll a, chlorophyll b, and cytochrome c) are applied on metasurfaces for color palettes to obtain selective molecular fingerprint imaging due to the unique biological light-matter interactions with application-specific biomedical metasurfaces. This metasurface-driven PRET hyperspectral imaging will open up a new path for multiplexed real-time molecular sensing and imaging methods.


Subject(s)
Cytochromes c , Hyperspectral Imaging , Chlorophyll A , Electron Transport , Energy Transfer
7.
Light Sci Appl ; 12(1): 68, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36882418

ABSTRACT

A single-step printable platform for ultraviolet (UV) metasurfaces is introduced to overcome both the scarcity of low-loss UV materials and manufacturing limitations of high cost and low throughput. By dispersing zirconium dioxide (ZrO2) nanoparticles in a UV-curable resin, ZrO2 nanoparticle-embedded-resin (nano-PER) is developed as a printable material which has a high refractive index and low extinction coefficient from near-UV to deep-UV. In ZrO2 nano-PER, the UV-curable resin enables direct pattern transfer and ZrO2 nanoparticles increase the refractive index of the composite while maintaining a large bandgap. With this concept, UV metasurfaces can be fabricated in a single step by nanoimprint lithography. As a proof of concept, UV metaholograms operating in near-UV and deep-UV are experimentally demonstrated with vivid and clear holographic images. The proposed method enables repeat and rapid manufacturing of UV metasurfaces, and thus will bring UV metasurfaces more close to real life.

8.
Nat Mater ; 22(4): 474-481, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36959502

ABSTRACT

Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hindered their mass production. Here we demonstrate low-cost and high-throughput mass production of large-aperture visible metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography. Once a 12″ master stamp is imprinted, hundreds of centimetre-scale metalenses can be fabricated using a thinly coated high-index film to enhance light confinement, resulting in a substantial increase in conversion efficiency. As a proof of concept, an ultrathin virtual reality device created with the printed metalens demonstrates its potential towards the scalable manufacturing of metaphotonic devices.

9.
Biosens Bioelectron ; 224: 115076, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36641876

ABSTRACT

Practical human biofluid sensing requires a sensor device to differentiate patients from the normal group with high sensitivity and specificity. Label-free molecular identification from human biofluids allows direct classification of abnormal samples, providing insights for disease diagnosis and finding of new biomarkers. Here, we introduce a label-free surface-enhanced Raman scattering sensor based on a three-dimensional plasmonic coral nanoarchitecture (3D-PCN), which has strong electromagnetic field enhancement through multiple hot spots. The 3D-PCN was synthesized on a paper substrate via direct one-step gold reduction, forming a coral-like nanoarchitecture with high absorption property for biofluids. This was fabricated as a urine test strip and then integrated with a handheld Raman system to develop an on-site urine diagnostic platform. The developed platform successfully classified the human prostate and pancreatic cancer urines in a label-free method supported by two types of deep learning networks, with high clinical sensitivity and specificity. Our technology has the potential to be utilized not only for urinary cancer diagnosis but also for various human biofluid sensing systems as a future point-of-care testing platform.


Subject(s)
Biosensing Techniques , Deep Learning , Metal Nanoparticles , Neoplasms , Humans , Early Detection of Cancer , Biosensing Techniques/methods , Spectrum Analysis, Raman/methods , Gold/chemistry , Metal Nanoparticles/chemistry
10.
Toxics ; 10(10)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36287850

ABSTRACT

Pyrogallol is an ingredient in hair dye. Its concentration in hair dye is managed at less than 2.0% in Korea. There have been no reports on the dermal absorption rate of pyrogallol. The two purposes of this study were to develop an analytical method and determine the dermal absorption rate of pyrogallol. An analytical method was developed and validated by high-performance liquid chromatography (HPLC) analysis of various matrices including swabs (SWAB), skin (SKIN, dermis + epidermis), stratum corneum (SC), and receptor fluid (RF). Linearity (r2 = 0.9993-0.9998), accuracy (92.1-108.2%), and precision (0.5-9.5%) met the validation criteria in guidelines. A Franz diffusion cell was used to determine the dermal absorption of pyrogallol using the skin of mini pigs. Pyrogallol (2.0%) was applied to the skin (10 µL/cm2). For the actual hair dye conditions, the skin was wiped with a swab 30 min after application. Twenty-four hours later, it was wiped with a swab again and the SC was collected using tape stripping. All samples were extracted with water and analyzed. RF was recovered at 0, 1, 2, 4, 8, 12, and 24 h. The total dermal absorption rate of pyrogallol was determined to be 26.0 ± 3.9%.

11.
Metabolites ; 12(6)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35736451

ABSTRACT

Sulforaphane is an isocyanate abundantly present in cruciferous vegetables. In the present study, we aimed to investigate the effects of sulforaphane on secondhand smoking (SHS)-induced pulmonary damage in mice. Additionally, a metabolomic study was performed to identify biomarkers associated with pulmonary disease using proton nuclear magnetic resonance (1H-NMR) analysis. Male C57BL6J mice were divided into a control group, an SHS exposure group (positive control group, PC), and a sulforaphane treatment group exposed to secondhand smoke (SS) (n = 5 per group). The PC and SS groups were exposed to secondhand smoke in a chamber twice daily for four weeks. Mice in the SS group were orally administered sulforaphane (50 mg/kg) for four weeks during secondhand smoke exposure. Histopathological examination of the lungs revealed pulmonary damage in PC mice, including loss of bronchial epithelial cells, bronchial wall thickening, and infiltration of macrophages. In contrast, mice in the SS group showed little or no epithelial thickening, thereby exhibiting reduced lung damage. Mouse serum and lung tissues were collected and analyzed to determine changes in endogenous metabolites using 1H-NMR. After target profiling, we identified metabolites showing the same tendency in the serum and lung as biomarkers for SHS-induced pulmonary damage, including taurine, glycerol, creatine, arginine, and leucine. As a result of histopathological examination, sulforaphane might inhibit SHS-induced lung damage, and metabolite analysis results suggest potential biomarkers for SHS-induced pulmonary damage in mice.

12.
Nano Lett ; 22(12): 4702-4711, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35622690

ABSTRACT

Plasmonic nanoparticle clusters promise to support unique engineered electromagnetic responses at optical frequencies, realizing a new concept of devices for nanophotonic applications. However, the technological challenges associated with the fabrication of three-dimensional nanoparticle clusters with programmed compositions remain unresolved. Here, we present a novel strategy for realizing heterogeneous structures that enable efficient near-field coupling between the plasmonic modes of gold nanoparticles and various other nanomaterials via a simple three-dimensional coassembly process. Quantum dots embedded in the plasmonic structures display ∼56 meV of a blue shift in the emission spectrum. The decay enhancement factor increases as the total contribution of radiative and nonradiative plasmonic modes increases. Furthermore, we demonstrate an ultracompact diagnostic platform to detect M13 viruses and their mutations from femtoliter volume, sub-100 pM analytes. This platform could pave the way toward an effective diagnosis of diverse pathogens, which is in high demand for handling pandemic situations.


Subject(s)
Metal Nanoparticles , Nanostructures , Quantum Dots , Gold/chemistry , Metal Nanoparticles/chemistry , Nanostructures/chemistry , Quantum Dots/chemistry
13.
Nanoscale ; 14(10): 3720-3730, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35230363

ABSTRACT

Artificial chiral structures have potential applications in the field of enantioselective signal sensing. Advanced nanofabrication methods enable a large diversity in geometric structures and broad selectivity of materials, which can be exploited to manufacture artificial three-dimensional chiral structures. Various chiroptical phenomena exploiting spin and orbital angular momentum at the nanoscale have been continuously exploited as a way to effectively detect enantiomers. This review introduces precisely controlled bottom-up and large-area top-down metamaterial fabrication methods to solve the limitations of high manufacturing cost and low production speed. Particle synthesis, self-assembly, glanced angled vapor deposition, and three-dimensional plasmonic nanostructure printing are introduced. Furthermore, emerging sensitive chiral sensing methods such as cavity-enhanced chirality, photothermal circular dichroism, and helical dichroism of single particles are discussed. The continuous progress of nanofabrication technology presents the strong potential for developing artificial chiral structures for applications in biomedical, pharmaceutical, nanophotonic systems.

14.
Nanoscale ; 14(12): 4380-4410, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35266481

ABSTRACT

The holographic display, one of the most realistic ways to reconstruct optical images in three-dimensional (3D) space, has gained a lot of attention as a next-generation display platform for providing deeper immersive experiences to users. So far, diffractive optical elements (DOEs) and spatial light modulators (SLMs) have been used to generate holographic images by modulating electromagnetic waves at each pixel. However, such architectures suffer from limitations in terms of having a resolution of only a few microns and the bulkiness of the entire optical system. In this review, we describe novel metasurfaces-based nanophotonic platforms that have shown exceptional control of electromagnetic waves at the subwavelength scale as promising candidates to overcome existing restrictions, while realizing flat optical devices. After introducing the fundamentals of metasurfaces in terms of spatial and spectral wavefront modulation, we present a variety of multiplexing approaches for high-capacity and full-color metaholograms exploiting the multiple properties of light as an information carrier. We then review tunable metaholograms using active materials modulated by several external stimuli. Afterward, we discuss the integration of metasurfaces with other optical elements required for future 3D display platforms in augmented/virtual reality (AR/VR) displays such as lenses, beam splitters, diffusers, and eye-tracking sensors. Finally, we address the challenges of conventional nanofabrication methods and introduce scalable preparation techniques that can be applied to metasurface-based nanophotonic technologies towards commercially and ergonomically viable future holographic displays.

15.
ACS Appl Mater Interfaces ; 14(1): 1404-1412, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34978805

ABSTRACT

Reconfigurable light absorbers have attracted much attention by providing additional optical responses and expanding the number of degrees of freedom in security applications. Fabry-Pèrot absorbers based on phase change materials with tunable properties can be implemented over large scales without the need for additional steps such as lithography, while exhibiting reconfigurable optical responses. However, a fundamental limitation of widely used phase change materials such as vanadium dioxide and germanium-antimony-tellurium-based chalcogenide glasses is that they have only two distinct phases; therefore, only two different states of optical properties are available. Here, we experimentally demonstrate active multilevel absorbers that are tuned by controlling the external temperature. This is produced by creating large-scale lithography-free multilayer structures with both undoped and tungsten-doped solution-processed monoclinic-phase vanadium dioxide thin films. The doping of vanadium dioxide with tungsten allows for the modulation of the phase-transition temperature, which results in an extra degree of freedom and therefore an additional step for the tunable properties. The proposed multilevel absorber is designed and characterized both numerically and experimentally. Such large-scale multilevel tunable absorbers realized with nanoparticle-based solution fabrication techniques are expected to open the way for advanced thermo-optical cryptographic devices based on tunable reflective coloration and near-infrared absorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...