Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1238005, 2023.
Article in English | MEDLINE | ID: mdl-37554355

ABSTRACT

Dysbiosis of the gut microbiome is thought to be the developmental origins of the host's health and disease through the microbiota-gut-brain (MGB) axis: such as immune-mediated, metabolic, neurodegenerative, and neurodevelopmental diseases. Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are common neurodevelopmental disorders, and growing evidence indicates the contribution of the gut microbiome changes and imbalances to these conditions, pointing to the importance of considering the MGB axis in their treatment. This review summarizes the general knowledge of gut microbial colonization and development in early life and its role in the pathogenesis of ASD/ADHD, highlighting a promising therapeutic approach for ASD/ADHD through modulation of the gut microbiome using psychobiotics (probiotics that positively affect neurological function and can be applied for the treatment of psychiatric diseases) and fecal microbial transplantation (FMT).


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Autistic Disorder , Gastrointestinal Microbiome , Microbiota , Humans , Attention Deficit Disorder with Hyperactivity/therapy , Autism Spectrum Disorder/therapy , Fecal Microbiota Transplantation
2.
Front Microbiol ; 14: 1148466, 2023.
Article in English | MEDLINE | ID: mdl-37256051

ABSTRACT

This study aimed to evaluate the difference in gut microbiomes between preterm and term infants using third-generation long-read sequencing (Oxford Nanopore Technologies, ONT) compared with an established gold standard, Illumina (second-generation short-read sequencing). A total of 69 fecal samples from 51 term (T) and preterm (P) infants were collected at 7 and 28 days of life. Gut colonization profiling was performed by 16S rRNA gene sequencing using ONT. We used Illumina to validate and compare the patterns in 13 neonates. Using bioinformatic analysis, we identified features that differed between P and T. Both T1 and P1 microbiomes were dominated by Firmicutes (Staphylococcus and Enterococcus), whereas sequentially showed dominant transitions to Lactobacillus (p < 0.001) and Streptococcus in T2 (p = 0.001), and pathogenic bacteria (Klebsiella) in P2 (p = 0.001). The abundance of beneficial bacteria (Bifidobacterium and Lactobacillus) increased in T2 (p = 0.026 and p < 0.001, respectively). These assignments were correlated with the abundance at the species-level. Bacterial α-diversity increased in T (p = 0.005) but not in P (p = 0.156), and P2 showed distinct ß-diversity clustering than T2 (p = 0.001). The ONT reliably identified pathogenic bacteria at the genus level, and taxonomic profiles were comparable to those identified by Illumina at the genus level. This study shows that ONT and Illumina are highly correlated. P and T had different microbiome profiles, and the α- and ß-diversity varied. ONT sequencing has potential for pathogen detection in neonates in clinical settings.

3.
Bioresour Technol ; 365: 128145, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36257521

ABSTRACT

The production of biohythane, a combination of energy-dense hydrogen and methane, from the anaerobic digestion of low-cost organic wastes has attracted attention as a potential candidate for the transition to a sustainable circular economy. Substantial research has been initiated to upscale the process engineering to establish a hythane-based economy by addressing major challenges associated with the process and product upgrading. This review provides an overview of the feasibility of biohythane production in various anaerobic digestion systems (single-stage, dual-stage) and possible technologies to upgrade biohythane to hydrogen-enriched renewable natural gas. The main goal of this review is to promote research in biohythane production technology by outlining critical needs, including meta-omics and metabolic engineering approaches for the advancements in biohythane production technology.


Subject(s)
Bioreactors , Methane , Anaerobiosis , Fermentation , Hydrogen/metabolism , Biofuels
SELECTION OF CITATIONS
SEARCH DETAIL
...