Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
Add more filters










Publication year range
1.
Anal Chem ; 96(21): 8467-8473, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38723271

ABSTRACT

Lipid droplets (LDs) store energy and supply fatty acids and cholesterol. LDs are a hallmark of chronic nonalcoholic fatty liver disease (NAFLD). Recently, studies have focused on the role of hepatic macrophages in NAFLD. Green fluorescent protein (GFP) is used for labeling the characteristic targets in bioimaging analysis. Cx3cr1-GFP mice are widely used in studying the liver macrophages such as the NAFLD model. Here, we have developed a tool for two-photon microscopic observation to study the interactions between LDs labeled with LD2 and liver capsule macrophages labeled with GFP in vivo. LD2, a small-molecule two-photon excitation fluorescent probe for LDs, exhibits deep-red (700 nm) fluorescence upon excitation at 880 nm, high cell staining ability and photostability, and low cytotoxicity. This probe can clearly observe LDs through two-photon microscopy (TPM) and enables the simultaneous imaging of GFP+ liver capsule macrophages (LCMs) in vivo in the liver capsule of Cx3cr1-GFP mice. In the NAFLD mouse model, Cx3cr1+ LCMs and LDs increased with the progress of fatty liver disease, and spatiotemporal changes in LCMs were observed through intravital 3D TPM images. LD2 will aid in studying the interactions and immunological roles of hepatic macrophages and LDs to better understand NAFLD.


Subject(s)
Lipid Droplets , Liver , Macrophages , Animals , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Mice , Macrophages/metabolism , Liver/diagnostic imaging , Liver/metabolism , Liver/pathology , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/chemistry , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Microscopy, Fluorescence, Multiphoton/methods , Fluorescent Dyes/chemistry , Mice, Inbred C57BL
2.
J Am Chem Soc ; 146(10): 7105-7115, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38417151

ABSTRACT

The binding of nucleotides is crucial for signal transduction as it induces conformational protein changes, leading to downstream cellular responses. Synthetic receptors that bind nucleotides and transduce the binding event into global conformational rearrangements are highly challenging to design, especially those that operate in an aqueous solution. Much work is focused on evaluating functionalized dyes to detect nucleotides, whereas coupling of a nucleotide-induced conformational switching to a sensing event has not been reported to date. We disclose synthetic receptors that undergo a global conformational rearrangement upon nucleotide binding. Integrating naphthalimide and the pyridinium ion into the structure enables stabilization of the folded conformation and efficient fluorescence quenching. The binding of a nucleotide rearranges the receptor conformation and alters the strong fluorescence enhancement. The methylpyridinium-containing receptor demonstrated high sensing selectivity for adenosine 5'-triphosphate (ATP) and a record 160-fold fluorescence enhancement. It can detect fluctuations of ATP in HeLa cells and possesses low cytotoxicity. The developed systems present an attractive approach for designing ATP-responsive artificial molecular switches that operate in water and integrate a strong fluorescence response.


Subject(s)
Adenosine Triphosphate , Receptors, Artificial , Humans , Adenosine Triphosphate/chemistry , Fluorescence , HeLa Cells , Nucleotides/metabolism , Positron-Emission Tomography , Spectrometry, Fluorescence , Protein Conformation , Fluorescent Dyes/chemistry , Adenosine Diphosphate/metabolism
3.
Chem Commun (Camb) ; 59(30): 4503-4506, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36974924

ABSTRACT

A heavy-atom-free photosensitizer (CI) based on an imidazole-carbazole conjugate exhibited strong fluorescence emission and ROS generation via both type I and II mechanisms. In particular, CI showed efficient photodynamic therapy and fluorescence bioimaging under two-photon (TP) excitation (740 nm) toward HeLa cells with negligible dark toxicity.


Subject(s)
Photochemotherapy , Humans , Fluorescence , HeLa Cells , Photochemotherapy/methods , Carbazoles , Imidazoles
4.
Front Chem ; 10: 1072143, 2022.
Article in English | MEDLINE | ID: mdl-36505737

ABSTRACT

Two-photon fluorescent trackers for monitoring of lipid droplets (LDs) would be highly effective for illustrating the critical roles of LDs in live cells or tissues. Although a number of one-photon fluorescent trackers for labeling LDs have been developed, their usability remains constrained in live sample imaging due to photo damage, shallow imaging depth, and auto-fluorescence. Recently, some two-photon fluorescent trackers for LDs have been developed to overcome these limitations. In this mini-review article, the advances in two-photon fluorescent trackers for monitoring of LDs are summarized. We summarize the chemical structures, two-photon properties, live sample imaging, and biomedical applications of the most recent representative two-photon fluorescent trackers for LDs. Additionally, the current challenges and future research trends for the two-photon fluorescent trackers of LDs are discussed.

5.
Anal Chem ; 94(43): 15100-15107, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36265084

ABSTRACT

The plasma membrane, which is a phosphoglyceride bilayer at the outer edge of the cell, plays diverse and important roles in biological systems. Visualization of the plasma membrane in live samples is important for various applications in biological functions. We developed an amphiphilic two-photon (TP) fluorescent probe (THQ-Mem) to selectively monitor the plasma membrane in live samples. This probe exhibited red emission (620-700 nm), large TP absorption cross sections (δmax > 790 GM), and high selectivity to the plasma membrane. In cultured cells and in vivo hepatic tissue imaging, THQ-Mem showed bright TP-excited fluorescence (TPEF) and remarkable selectivity for the plasma membrane. Furthermore, simultaneous in vivo imaging with THQ-Mem and a TP lipid droplet probe could serve as an efficient tool to monitor morphological and physiological changes in the plasma membrane and lipid droplets.


Subject(s)
Lipid Droplets , Photons , Fluorescent Dyes , Cell Membrane , Fluorescence
6.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077368

ABSTRACT

The accumulation of hepatic lipid droplets (LDs) is a hallmark of non-alcoholic fatty liver disease (NAFLD). Appropriate degradation of hepatic LDs and oxidation of complete free fatty acids (FFAs) are important for preventing the development of NAFLD. Histone deacetylase (HDAC) is involved in the impaired lipid metabolism seen in high-fat diet (HFD)-induced obese mice. Here, we evaluated the effect of MS-275, an inhibitor of HDAC1/3, on the degradation of hepatic LDs and FFA oxidation in HFD-induced NAFLD mice. To assess the dynamic degradation of hepatic LDs and FFA oxidation in fatty livers of MS-275-treated HFD C57BL/6J mice, an intravital two-photon imaging system was used and biochemical analysis was performed. The MS-275 improved hepatic metabolic alterations in HFD-induced fatty liver by increasing the dynamic degradation of hepatic LDs and the interaction between LDs and lysozyme in the fatty liver. Numerous peri-droplet mitochondria, lipolysis, and lipophagy were observed in the MS-275-treated mouse fatty liver. Biochemical analysis revealed that the lipolysis and autophagy pathways were activated in MS-275 treated mouse liver. In addition, MS-275 reduced the de novo lipogenesis, but increased the mitochondrial oxidation and the expression levels of oxidation-related genes, such as PPARa, MCAD, CPT1b, and FGF21. Taken together, these results suggest that MS-275 stimulates the degradation of hepatic LDs and mitochondrial free fatty acid oxidation, thus protecting against HFD-induced NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Benzamides , Diet, High-Fat/adverse effects , Fatty Acids, Nonesterified/metabolism , Lipid Droplets/metabolism , Lipid Metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Non-alcoholic Fatty Liver Disease/metabolism , Pyridines
7.
ACS Sens ; 7(4): 1027-1035, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35385270

ABSTRACT

Lipid droplets (LDs) are lipid-abundant organelles found in most cell lines and primarily consist of neutral lipids. They serve as a repository of various lipids and are associated with many cellular metabolic processes, including energy storage, membrane synthesis, and protein homeostasis. LDs are prominent in a variety of diseases related to lipid regulation, including obesity, fatty liver disease, diabetes, and atherosclerosis. To monitor LD dynamics in live samples, we developed a highly selective two-photon fluorescent tracker for LDs (LD1). It exhibited outstanding sensitivity with a remarkable two-photon-action cross section (Φδmax > 600 GM), photostability, and low cytotoxicity. In human hepatocytes and in vivo mouse liver tissue imaging, LD1 showed very bright fluorescence with high LD selectivity and minimized background signal to evaluate the stages of nonalcoholic fatty liver disease. Interestingly, we demonstrated that the liver sinusoid morphology became narrower with increasing LD size and visualized the dynamics including fusion of the LDs in vivo. Moreover, real-time and dual-color TPM imaging with LD1 and a two-photon lysosome tracker could be a useful predictive screening tool in the drug development process to monitor impending drug-induced liver injury inducing drug candidates.


Subject(s)
Chemical and Drug Induced Liver Injury , Lipid Droplets , Animals , Chemical and Drug Induced Liver Injury/diagnostic imaging , Chemical and Drug Induced Liver Injury/metabolism , Hepatocytes/metabolism , Lipid Droplets/metabolism , Lipids , Mice
8.
Chem Commun (Camb) ; 58(22): 3633-3636, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35202451

ABSTRACT

Glutathione (GSH) is known to play a key role in the modulation of the redox environment in N-methyl-d-aspartate (NMDA) receptors. Coumarin derivative 1 bearing cyanoacrylamide and ifenprodil moieties was synthesized and reported to monitor GSH near NMDA receptors. The cyanoacrylamide moiety allows probe 1 to monitor GSH reversibly at pH 7.4 and the ifenprodil group acts as a directing group for NMDA receptors. Two-photon fluorescence microscopy allows probe 1 to successfully sense endogenous GSH in neuronal cells and hippocampal tissues with excitation at 750 nm. Furthermore, the addition of H2O2 and GSH induced a decrease and an increase in fluorescence emission. Probe 1 can serve as a potential practical imaging tool to get important information on GSH in the brain.


Subject(s)
N-Methylaspartate , Receptors, N-Methyl-D-Aspartate , Coumarins , Fluorescent Dyes , Glutathione/metabolism , Hydrogen Peroxide
9.
Anal Chem ; 93(50): 16821-16827, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34886662

ABSTRACT

Inappropriate cancer management can be prevented by simultaneous cancer diagnosis, treatment, and real-time assessment of therapeutic processes. Here, we describe the design of a two-photon (TP) photosensitizer (PS), ACC-B, for high temporal and spatioselective near-infrared cancer therapy. ACC-B consisting of a biotin unit significantly enhanced the cancer sensitivity of the PS. Upon TP irradiation, ACC-B generated reactive oxygen species (ROS) through the type I photodynamic therapy (PDT) process and triggered highly selective cancer ablation. In addition, fluorescence microscopy images revealed that ACC-B-loaded live human colon tissues showed a marked difference in ACC-B uptake between normal and cancer tissues, and this property was used for real-time imaging. Upon 770 nm TP treatment, ACC-B generated ROS efficiently in live colon cancer tissues with high spatial selectivity. During PDT, ACC-B can provide in situ spatioselective visualization of cellular behavior and molecular information for therapeutic assessment in specific regions.


Subject(s)
Neoplasms , Photochemotherapy , Azo Compounds , Colon/diagnostic imaging , Humans
10.
Chem Commun (Camb) ; 57(84): 11084-11087, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34617087

ABSTRACT

Excited-state intramolecular proton transfer (ESIPT)-based fluorophores with two-photon excitation fluorescence (TPEF) are rare. Our aim with this research was to develop ESIPT-based fluorophores exhibiting TPEF. Herein, we used 4-hydroxyisoindoline-1,3-dione as a scaffold to develop a two-photon fluorescent probe BHID-Bpin, for the detection of peroxynitrite (ONOO-). BHID-Bpin exhibits excellent selectivity, sensitivity, and fast response towards ONOO- in PBS buffer solution (10 mM, pH = 7.40). Additionally, BHID-Bpin displays high photo-stability under two-photon irradiation at 750 nm. Furthermore, the probe can image endogenous ONOO- in HeLa cells and exogenous ONOO- in rat hippocampal slices at a depth of 110 µm.

11.
Anal Chem ; 93(44): 14778-14783, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34705435

ABSTRACT

ß-Galactosidase (ß-gal), well known as a useful reporter enzyme, is a potent biomarker for various diseases such as colorectal and ovarian cancers. We have developed a highly stable red-emissive ratiometric fluorescent probe (CCGal1) for quantitatively monitoring the ß-gal enzyme activity in live cells and tissues. This ratiometric probe showed a fast emission color change (620-662 nm) in response to ß-gal selectively, which was accompanied by high enzyme reaction efficacy, cell-staining ability, and outstanding stability with minimized cytotoxicity. Confocal fluorescence microscopy ratiometric images, combined with fluorescence-activated cell sorting flow cytometry, demonstrated that CCGal1 could provide useful information for the diagnosis, prognosis, and treatment of ß-gal enzyme activity-related diseases such as colorectal and ovarian cancers. Further, it may yield meaningful strategies for designing and modifying multifunctional bioprobes with different biomedical applications.


Subject(s)
Fluorescent Dyes , Flow Cytometry , Microscopy, Confocal , Microscopy, Fluorescence , beta-Galactosidase
12.
Chem Commun (Camb) ; 57(81): 10608-10611, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34570136

ABSTRACT

AzuFluor® 435-DPA-Zn, an azulene fluorophore bearing two zinc(II)-dipicolylamine receptor motifs, exhibits fluorescence enhancement in the presence of adenosine diphosphate. Selectivity for ADP over ATP, AMP and PPi results from appropriate positioning of the receptor motifs, since an isomeric sensor cannot discriminate between ADP and ATP.


Subject(s)
Adenosine Diphosphate/analysis , Azulenes/chemistry , Fluorescent Dyes/chemistry , Humans , Molecular Structure , Spectrometry, Fluorescence
13.
Front Oncol ; 11: 634219, 2021.
Article in English | MEDLINE | ID: mdl-34513658

ABSTRACT

BACKGROUND: Endoscopy is the most important tool for gastric cancer diagnosis. However, it relies on naked-eye evaluation by endoscopists, and the histopathologic confirmation is time-consuming. We aimed to visualize and measure the activity of various enzymes through two-photon microscopy (TPM) using fluorescent probes and assess its diagnostic potential in gastric cancer. METHODS: ß-Galactosidase (ß-gal), carboxylesterase (CES), and human NAD(P)H: quinone oxidoreductase (hNQO1) enzyme activities in the normal mucosa, ulcer, adenoma, and gastric cancer biopsy samples were measured using two-photon enzyme probes. The fluorescence emission ratio at long and short wavelengths (Ch2/Ch1) for each probe was comparatively analyzed. Approximately 8,000 - 9,000 sectional images in each group were obtained by measuring the Ch2/Ch1 ratio according to the tissue depth. Each probe was cross-validated by measuring enzymatic activity from a solution containing lysed tissue. RESULTS: Total of 76 subjects were enrolled in this pilot study (normal 21, ulcer 18, adenoma 17, and cancer 20 patients, respectively). There were significant differences in the mean ratio values of ß-gal (0.656 ± 0.142 vs. 1.127 ± 0.109, P < 0.001) and CES (0.876 ± 0.049 vs. 0.579 ± 0.089, P < 0.001) between the normal and cancer, respectively. The mean ratio value of cancer tissues was different compared to ulcer and adenoma (P < 0.001). The hNQO1 activity showed no significant difference between cancer and other conditions. Normal mucosa and cancer were visually and quantitatively distinguished through ß-gal and CES analyses using TPM images, and enzymatic activity according to depth, was determined using sectional TPM ratiometric images. The results obtained from lysis buffer-treated tissue were consistent with TPM results. CONCLUSIONS: TPM imaging using ratiometric fluorescent probes enabled the discrimination of gastric cancer from normal, ulcer, and adenoma. This novel method can help in a visual differentiation and provide quantitative depth profiling in gastric cancer diagnosis.

14.
Anal Chem ; 93(33): 11612-11616, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34382767

ABSTRACT

N-Methyl-d-aspartate (NMDA) is an excitotoxic amino acid used to identify a specific subset of glutamate receptors. The activity of NMDA receptors is closely related to the redox level of the biological system. Glutathione (GSH) as an antioxidant plays a key role with regard to modulation of the redox environment. In this work we designed and developed a GSH-specific fluorescent probe with the capability of targeting NMDA receptors, which was composed of a two-photon naphthalimide fluorophore, a GSH-reactive group sulfonamide, and an ifenprodil targeting group for the NMDA receptor. This probe exhibited high selectivity toward GSH in comparison to other similar amino acids. Two-photon fluorescence microscopy allowed this probe to successfully monitor GSH in neuronal cells and hippocampal tissues with an excitation at 750 nm. It could serve as a potential practical imaging tool to explore the function of GSH and related biological processes in the brain.


Subject(s)
Fluorescent Dyes , Receptors, N-Methyl-D-Aspartate , Glutathione/metabolism , Microscopy, Fluorescence , Photons
15.
Chem Commun (Camb) ; 57(71): 8929-8932, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34397047

ABSTRACT

A cyclocyanine (CC)-based organic small molecule two-photon (TP) fluorescent probe (CCNa1) was developed for mitochondrial sodium ion sensing. CCNa1 exhibits a low solvatochromic shift and strong TP fluorescence enhancement at 575 nm upon binding to Na+ and is insensitive to other metal ions and to pH. CCNa1 demonstrated fast cell loading ability, biocompatibility, and sensitive response to mitochondrial Na+ influx in live cells and mouse brain tissue.


Subject(s)
Fluorescent Dyes/chemistry , Mitochondria/chemistry , Sodium/analysis , Animals , Crown Ethers/chemistry , Crown Ethers/radiation effects , Crown Ethers/toxicity , Fluorescent Dyes/radiation effects , Fluorescent Dyes/toxicity , HeLa Cells , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/radiation effects , Heterocyclic Compounds, 4 or More Rings/toxicity , Hippocampus/metabolism , Humans , Mice , Photons , Sodium/metabolism
16.
Front Chem ; 9: 713078, 2021.
Article in English | MEDLINE | ID: mdl-34322477

ABSTRACT

The ability to detect hypochlorite (HOCl/ClO-) in vivo is of great importance to identify and visualize infection. Here, we report the use of imidazoline-2-thione (R 1 SR 2 ) probes, which act to both sense ClO- and kill bacteria. The N2C=S moieties can recognize ClO- among various typical reactive oxygen species (ROS) and turn into imidazolium moieties (R 1 IR 2 ) via desulfurization. This was observed through UV-vis absorption and fluorescence emission spectroscopy, with a high fluorescence emission quantum yield (ՓF = 43-99%) and large Stokes shift (∆v∼115 nm). Furthermore, the DIM probe, which was prepared by treating the DSM probe with ClO-, also displayed antibacterial efficacy toward not only Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) but also methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum ß-lactamase-producing Escherichia coli (ESBL-EC), that is, antibiotic-resistant bacteria. These results suggest that the DSM probe has great potential to carry out the dual roles of a fluorogenic probe and killer of bacteria.

17.
Chem Commun (Camb) ; 57(56): 6911-6914, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34152336

ABSTRACT

A coumarin-based two-photon (TP) fluorescent off-on probe has been developed for detecting tyrosinase activity. High selectivity, sensitivity and biocompatibility enable the probes to successfully image tyrosinase activity in live cells and tissues using TP microscopy.


Subject(s)
Coumarins/chemistry , Fluorescent Dyes/chemistry , Monophenol Monooxygenase/analysis , Animals , Cell Line, Tumor , Coumarins/metabolism , Drug Design , Fluorescent Dyes/metabolism , Humans , Limit of Detection , Mice , Microscopy, Fluorescence, Multiphoton , Monophenol Monooxygenase/metabolism , Photons , Rats
18.
ACS Appl Bio Mater ; 4(3): 2135-2141, 2021 03 15.
Article in English | MEDLINE | ID: mdl-35014342

ABSTRACT

Stomach cancer is a global health issue because of its incidence and mortality rates worldwide. We developed a near-infrared (NIR) emissive ratiometric two-photon (TP) probe (HCC1) for the quantitative analysis of pH in live cells and human stomach tissues. The probe design is based on a restrained hemicyanine core that controls the intramolecular charge transfer from 2-naphthol, with a suitable pKa value (7.50) under physiological conditions. The probe exhibited improved quantum yield, stability, and TP activity under physiological conditions. In addition, intracellular pH titration (pH 4.0 to 10.0) of HCC1 revealed an ideal intracellular pKa of approximately 7.2, negligible cytotoxicity, and TP excited fluorescence in situ, thereby allowing direct imaging of the cellular pH in live cells and tissues. Ratiometric two-photon microscope imaging with HCC1 of human stomach tissue revealed a clear intratissue pH variation among normal, adenoma, and cancer tissues. Our results demonstrate that HCC1 is useful as an NIR imaging probe for in situ pH-related studies and in cancer research.


Subject(s)
Biocompatible Materials/chemistry , Fluorescent Dyes/chemistry , Photons , Stomach Neoplasms/diagnostic imaging , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration , Materials Testing , Molecular Structure , Particle Size , Stomach Neoplasms/pathology
19.
ACS Appl Bio Mater ; 4(4): 2957-2973, 2021 04 19.
Article in English | MEDLINE | ID: mdl-35014386

ABSTRACT

Enzyme regulation is crucial in living organisms to catalyze various biosyntheses to maintain several physiological functions. On the contrary, abnormal enzyme activities can affect bioactivities leading to various serious disorders including cancer, Alzheimer's disease, Parkinson's disease, heart disease, and so on. This biological significance led to the development of various techniques to map specific enzyme activities in living systems to understand their role and distribution. Two-photon microscopy (TPM) in particular has emerged as a promising system for in situ real-time bioimaging owing to its robustness, high sensitivity, and noninvasiveness. It was achieved through the use of a two-photon (TP) light source of an optical window (700-1450 nm) beneficial in deeper light penetration and extraordinary spatial selectivity. Therefore, developing enzyme sensors utilized in TPM has significance in obtaining in vivo enzyme activities with minimal perturbation. The development of an efficient detection tool for enzymes has been continuously reported in the previous literature; here, we meticulously review the TP design strategies that have been attempted by researchers to develop enzyme TP fluorescent sensors that are proving very useful in providing insights for enzyme investigation in the biological system. In this review, the representative TP enzymatic probes that have been made in the past 5 years and their applications in tissue imaging are discussed in brief. In addition, the prospects and challenges of TP enzymatic probe development are also discussed.


Subject(s)
Biocompatible Materials/chemistry , Fluorescent Dyes/chemistry , Microscopy, Fluorescence, Multiphoton , Optical Imaging , Photons , Cell Line, Tumor , Enzymes , Humans , Materials Testing , Particle Size
20.
Chem Sci ; 11(28): 7329-7334, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-33033609

ABSTRACT

In this work, we have developed an ESIPT-based benzimidazole platform (MO-E1 and MO-E2) for the two-photon cell imaging of ONOO- and a potential ONOO--activated theranostic scaffold (MO-E3). Each benzimidazole platform, MO-E1-3, were shown to rapidly detect ONOO- at micromolar concentrations (LoD = 0.28 µM, 6.53 µM and 0.81 µM respectively). The potential theranostic MO-E3 was shown to release the parent fluorophore and drug indomethacin in the presence of ONOO- but unfortunately did not perform well in vitro due to low solubility. Despite this, the parent scaffold MO-E2 demonstrated its effectiveness as a two-photon imaging tool for the ratiometric detection of endogenous ONOO- in RAW264.7 macrophages and rat hippocampus tissue. These results demonstrate the utility of this ESIPT benzimidazole-based platform for theranostic development and bioimaging applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...