Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 45(15): 4108-4111, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32735235

ABSTRACT

Topology plays a fundamental role in contemporary physics and enables new information processing schemes and wave device physics with built-in robustness. However, the creation of photonic topological phases usually requires complex geometries that limit the prospect for miniaturization and integration and dispossess designers of additional degrees of freedom needed to control topological modes on-chip. By controlling the degree of asymmetry (DoA) in a photonic crystal with broken inversion symmetry, we report single-mode lasing of valley-Hall ring cavities at telecommunication wavelength. The DoA governs four photon confinement regimes at the interface of topologically distinct valley-Hall domains and evidences an interplay between the width of the topological bandgap and the quality factor of ring-like modes for single-mode operation. Our results open the door to novel optoelectronic devices and systems based on compact topological integrated circuits.

2.
Opt Express ; 28(11): 16822-16833, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32549496

ABSTRACT

Nanoantennas play an important role as mediators to efficiently convert free-space light into localized optical energy and vice versa. However, effective control of the beam direction of a single nanoantenna remains a great challenge. In this paper, we propose an approach to steer the beam direction of a single nanoantenna by adjusting two antenna modes with opposite phase symmetry. Our theoretical study confirmed that the combination of even- and odd-symmetric modes with a phase difference of π/2 enables effective beam steering of a single nanoantenna whose steering angle is controlled by adjusting the amplitude ratio of the two antenna modes. To implement our theory in real devices, we introduced asymmetric trapezoidal nano-slot antennas with different side air-gaps of 10 and 50 nm. The trapezoidal nanoantennas can simultaneously excite the dipole and quadrupole modes in a single nanoantenna and enables effective beam steering with an angle of greater than 35° near the resonance of the quadrupole mode. In addition, the steering angle can also be controlled by adjusting the degree of asymmetry of the trapezoidal slot structure. We believe that our beam steering method for a single nanoantenna will find many potential applications in fields such as imaging, sensing, optical communication, and quantum optics.

3.
Nanoscale ; 11(19): 9580-9586, 2019 May 16.
Article in English | MEDLINE | ID: mdl-31062774

ABSTRACT

Metasurfaces, or two-dimensional arrays of subwavelength-scale structures, can exhibit extraordinary optical properties. However, typical metasurfaces have a bumpy surface morphology that may restrict their practical applications. Here, we propose and demonstrate an optical metasurface that is composed of a thin metallic film, with hidden dielectric structures underneath, and a metal back mirror layer. Exploiting the large difference between the Thomas-Fermi screening length for longitudinal electric fields and the skin depth for transverse electromagnetic fields, the near-atomically flat top surface of the proposed structure can appear homogeneous chemically and electrically but highly inhomogenous optically. The size and shape of the hidden dielectric structures as well as the thickness of the top metallic layer can be tailored to acquire desired optical properties. We performed both theoretical and experimental studies of the proposed metasurface, finding a good agreement between them. This work provides a new platform for ultra-flat optical devices, such as a wavelength selective electrode, diffusive back reflector, meta-lens, and plasmonically enhanced optical biosensors.

4.
Nat Photonics ; 13(10): 720-727, 2019 Oct.
Article in English | MEDLINE | ID: mdl-32231707

ABSTRACT

Large-scale single-cell analyses have become increasingly important given the role of cellular heterogeneity in complex biological systems. However, no current techniques enable optical imaging of uniquely-tagged individual cells. Fluorescence-based approaches can only distinguish a small number of distinct cells or cell groups at a time because of spectral crosstalk between conventional fluorophores. Here we investigate large-scale cell tracking using intracellular laser particles as imaging probes that emit coherent laser light with a characteristic wavelength. Made of silica-coated semiconductor microcavities, these laser particles have single-mode emission over a broad range from 1170 to 1580 nm with sub-nm linewidths, enabling massive spectral multiplexing. We explore the stability and biocompatibility of these probes in vitro and their utility for wavelength-multiplexed cell tagging and imaging. We demonstrate real-time tracking of thousands of individual cells in a 3D tumour model over several days showing different behavioural phenotypes.

5.
Opt Express ; 26(10): 12569-12578, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29801295

ABSTRACT

We report a novel scheme for monolithic integration of a nanoisland laser with a shifted-air-hole waveguide by employing selective etching techniques. An active L3 laser cavity and passive shifted-air-hole waveguide are simultaneously formed through a single fabrication step. In the shifted-air-hole waveguide, the air-hole position is adjusted to be compatible with selective etching. The spectral overlap between the L3 laser resonance and guided mode is achieved by introducing small air holes at the nodes of the shifted-air-hole waveguide. Experiments show that >60% of the light is coupled from the nanoisland laser to the end of the 12-µm-long waveguide.

6.
Opt Express ; 25(6): 6311-6319, 2017 Mar 20.
Article in English | MEDLINE | ID: mdl-28380984

ABSTRACT

We propose and demonstrate a novel one-dimensional nanobeam bandedge laser constituted by self-aligned nanoisland quantum-well (QW) structures. The formation of self-aligned InGaAsP nanoislands sandwiched between two InP claddings is the result of selective removal of QW through wet-etching processes. By controlling wet-etching time, we show a good spatial and spectral overlap between the dielectric mode and the self-aligned nanoisland structures leads to the realization of nanobeam bandedge lasers with low-threshold operations and high slope efficiencies. Optical characterization results indicate a strong correlation between the size of individual nanoisland and the threshold power of our nanobeam bandedge lasers. We obtain an approximately 81% reduction in the absorbed threshold power as we optimize the size of the nanoislands.

7.
Opt Lett ; 40(22): 5351-4, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26565872

ABSTRACT

The miniaturization of optical sensors is essential for the realization of compact, portable, and cost-effective devices. Photonic crystal-based optical sensors, which have an ultra-small mode volume and footprint, have demonstrated remarkable recent progress in achieving a high figure-of-merit (FOM) in a sensor. Here, we report an optical sensor with a high Q-factor and high sensitivity based on a photonic crystal nanobeam using the second lowest air band-edge mode. We calculated that a nanobeam (n=3.4) in a water environment (n=1.33) has refractive-index sensitivity of ~631 nm/RIU, while the quality factor is greater than 23,300. Accordingly, a theoretical FOM of the sensor corresponds to >9500. To the best of our knowledge, experimental refractive-index sensitivity of 461 nm/RIU is the highest value among photonic crystal single nanobeam geometry. The simple geometry of uniform air hole sizes and lattice constants in the proposed nanobeam sensor allows easy fabrication and mechanical stability.

8.
Opt Express ; 22(4): 4699-704, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24663788

ABSTRACT

We demonstrate large-area, closely-packed optical vortex arrays using self-assembled defects in smectic liquid crystals. Self-assembled smectic liquid crystals in a three-dimensional torus structure are called focal conic domains. Each FCD, having a micro-scale feature size, produces an optical vortex with consistent topological charge of 2. The spiral profile in the interferometry confirms the formation of an optical vortex, which is predicted by Jones matrix calculations.

9.
Opt Express ; 22(25): 30707-12, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25607018

ABSTRACT

A low-voltage-tunable one-dimensional nanobeam laser is realized by employing lithographically defined lateral electrodes. An InGaAsP nanobeam with a sub-micrometer width is transfer-printed in the middle of two electrodes using a polydimethylsiloxane stamp. Spectral tuning is achieved by controlling the molecular alignment of the surrounding liquid crystals (LCs). From µm-scale-gap structures, a total wavelength shift that exceed 6 nm is observed at a low voltage of less than 10 V. A measured spectral tuning rate of 0.87 nm/V, which is the largest value ever reported to our knowledge among LC-tuned photonic crystal lasers, was also noted.

SELECTION OF CITATIONS
SEARCH DETAIL
...