Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 6(4): 402-7, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25893040

ABSTRACT

A series of fluorine-substituted monomeric and dimeric cRGD peptide derivatives, such as cRGD-ADIBOT-F (ADIBOT = azadibenzocyclooctatriazole), di-cRGD-ADIBOT-F, cRGD-PEG5-ADIBOT-F, and di-cRGD-PEG5-ADIBOT-F, were prepared by strain-promoted alkyne azide cycloaddition (SPAAC) reaction of the corresponding aza-dibenzocyclooctyne (ADIBO) substituted peptides with a fluorinated azide 3. Among these cRGD derivatives, di-cRGD-PEG5-ADIBOT-F had the highest binding affinity in a competitive binding assay compared to other derivatives and even the original cRGDyk. On the basis of the in vitro study results, di-cRGD-PEG5-ADIBOT-(18)F was prepared from a SPAAC reaction with (18)F-labeled azide and subsequent chemo-orthogonal scavenger-assisted separation without high performance liquid chromatography (HPLC) purification in 92% decay-corrected radiochemical yield (dcRCY) with high specific activity for further in vivo positron emission tomography (PET) imaging study. In vivo PET imaging study and biodistribution data showed that this radiotracer allowed successful visualization of tumors with good tumor-to-background contrast and significantly higher tumor uptake compared to other major organs.

2.
Angew Chem Int Ed Engl ; 52(40): 10549-52, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23956036

ABSTRACT

Last-minute labeling: Mesoporous silica nanoparticles (MSNs) were modified with a very short half-life fluorine-18-labeled azide radiotracer by a cycloaddition reaction after the MSNs had reached the tumor site in mice. The tumor could then be visualized successfully with positron emission tomography.


Subject(s)
Nanoparticles , Positron-Emission Tomography/methods , Radiopharmaceuticals , Silicon Dioxide , Animals , Female , Fluorine Radioisotopes/chemistry , Mice , Mice, Nude , Molecular Imaging/methods , Nanoparticles/chemistry , Radiopharmaceuticals/chemistry , Silicon Dioxide/chemistry
3.
Bioconjug Chem ; 23(8): 1680-6, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22770524

ABSTRACT

We introduce the high-throughput synthesis of various (18)F-labeled peptide tracers by a straightforward (18)F-labeling protocol based on a chemo-orthogonal strain-promoted alkyne azide cycloaddition (SPAAC) using aza-dibenzocyclootyne-substituted peptides as precursors with (18)F-azide synthon to develop peptide based positron emission tomography (PET) molecular imaging probes. The SPAAC reaction and subsequent chemo-orthogonal purification reaction with azide resin proceeded quickly and selectively under physiologically friendly reaction conditions (i.e., toxic chemical reagents-free, aqueous medium, room temperature, and pH ≈7), and provided four (18)F-labeled tumor targetable bioactive peptides such as cyclic Arg-Gly-Asp (cRGD) peptide, bombesin (BBN), c-Met binding peptide (cMBP), and apoptosis targeting peptide (ApoPep) in high radiochemical yields as direct injectable solutions without any HPLC purification and/or formulation processes. In vitro binding assay and in vivo PET molecular imaging study using the (18)F-labeled cRGD peptide also demonstrated a successful application of our (18)F-labeling protocol.


Subject(s)
Cycloaddition Reaction/methods , Isotope Labeling/methods , Peptides/chemistry , Alkynes/chemistry , Animals , Aza Compounds/chemistry , Azides/chemistry , Female , Iodine Radioisotopes/chemistry , Mice , Peptides/pharmacokinetics , Positron-Emission Tomography , Radioactive Tracers
SELECTION OF CITATIONS
SEARCH DETAIL
...