Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Sci Rep ; 14(1): 12648, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825629

ABSTRACT

Observational studies have shown controversial associations between alcohol intake and radiographic osteoarthritis (OA). This study investigated whether this association was causal using a Mendelian randomization (MR) study in a population-based cohort in Korean. The study enrolled 2429 subjects (1058 men, 1371 women) from the Dong-gu Study. X-rays of the hand and knee joints were scored using a semi-quantitative grading system to calculate the total score of the hand and knee joints. ALDH2 rs671 genotyping was performed by high-resolution melting analysis. MR instrumental variable analysis and observational multivariable regression analysis were used to estimate the association between genetically predicted alcohol intake and the radiographic severity of OA. Subjects with the G/G genotype had a higher current alcohol intake than those with the G/A and A/A genotypes in both men and women (all P < 0.001). Men with the G/G genotype had higher total knee (P < 0.001) and hand scores (P = 0.042) compared to those with the G/A and A/A genotypes after adjusting for age and body mass index, but not in women. In the observational multivariable regression analysis, each alcohol drink per day in men was associated with increased knee (P = 0.001) and hand joint scores (P = 0.013) after adjustment, but not in women. In our MR analysis, utilizing ALDH2 rs671 genotypes as instrumental variables for alcohol consumption, has shown a significant link between each additional daily alcohol drink and increased radiographic joint severity in men.


Subject(s)
Alcohol Drinking , Aldehyde Dehydrogenase, Mitochondrial , Osteoarthritis, Knee , Humans , Male , Alcohol Drinking/adverse effects , Female , Middle Aged , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/genetics , Aldehyde Dehydrogenase, Mitochondrial/genetics , Osteoarthritis/genetics , Osteoarthritis/diagnostic imaging , Aged , Radiography , Severity of Illness Index , Hand Joints/diagnostic imaging , Hand Joints/pathology , Genotype , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Knee Joint/diagnostic imaging , Knee Joint/pathology
2.
Medicine (Baltimore) ; 103(18): e37970, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701283

ABSTRACT

BACKGROUND: Deer antlers have been used as strong tonifying medicine in Asian countries, especially for the growth and development of children in pediatrics of Korean medicine. The safety of deer antler in adults cannot be applied directly to children because of their physiological characteristics. To accumulate reliable data on the safety of deer antler in pediatric populations, well-designed clinical studies are required. METHODS: This research is a 12-week, randomized, double-blind, placebo-controlled clinical trial evaluating the safety of deer antler extract (DAE) in children. The DAE group received an intervention containing 1586 mg of DAE, whereas the control group received a placebo for 12 weeks. The safety was assessed by monitoring adverse drug reactions (ADRs) and laboratory test results. RESULTS: One hundred participants were included in the safety analysis. Three and 2 participants in the DAE and control groups, respectively, reported ADRs. There was no significant difference in incidence between the 2 groups. ADRs are categorized into gastrointestinal and skin-related symptoms. No serious ADR was observed throughout the study. The laboratory test results were within or outside the normal range at clinically insignificant levels. CONCLUSION: The research discovered that the DAE is safe in terms of ADRs and laboratory parameters under the conditions studied. Further studies are required to accumulate safety data about DAE dosage adjustment and potential interactions with other medicines.


Subject(s)
Antlers , Deer , Humans , Antlers/chemistry , Animals , Male , Child , Female , Double-Blind Method , Tissue Extracts/therapeutic use , Tissue Extracts/adverse effects , Tissue Extracts/pharmacology , Child, Preschool , Republic of Korea , Adolescent
3.
Biomol Ther (Seoul) ; 32(4): 492-498, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38651201

ABSTRACT

Bioassay and HPLC-UV guided fractionations of the crude extract of marine-derived Streptomyces sp. SNA-077 have led to the isolation of a red pigment, undecylprodigiosin (1). The chemical structure of undecylprodigiosin (1) was revealed by the interpretation of NMR and mass spectroscopic (MS) data. Further, anti-melanogenic effects of undecylprodigiosin (1) were investigated. First, the melanin contents of undecylprodigiosin (1)-treated B16 cells were evaluated. Furthermore, undecylprodigiosin (1) significantly inhibited the key enzymes involved in melanogenesis, including tyrosinase, tyrosinase related protein-1 (TYRP-1), and dopachrome tautomerase (DCT). The mRNA and protein expression levels of Microphthalmia-associated transcriptian factor (MiTF), a critical transcription factor for tyrosinase gene expression, were also suppressed by undecylprodigiosin (1) treatment in B16 analyses. Collectively, our results suggest for the first time that undecylprodigiosin (1), a potent component isolated from an extract of marine Streptomyces sp. SNA-077, critically exerts the anti-melanogenic ability for melanin synthesis.

4.
Mar Drugs ; 22(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38393043

ABSTRACT

Although melanin protects against ultraviolet radiation, its overproduction causes freckles and senile lentigines. Recently, various biological effects of metabolites derived from marine microorganisms have been highlighted due to their potential for biological and pharmacological applications. In this study, we discovered the anti-melanogenic effect of Bacillus sp. APmarine135 and verified the skin-whitening effect. Fractions of APmarine135 showed the melanin synthesis inhibition effect in B16 melanoma cells, and 2,4,6-triphenyl-1-hexene was identified as an active compound. The melanogenic capacity of 2,4,6-triphenyl-1-hexene (1) was investigated by assessing the intracellular melanin content in B16 cells. Treatment with 5 ppm of 2,4,6-triphenyl-1-hexene (1) for 72 h suppressed the α-melanocyte-stimulating hormone (α-MSH)-induced intracellular melanin increase to the same level as in the untreated control group. Additionally, 2,4,6-triphenyl-1-hexene (1) treatment suppressed the activity of tyrosinase, the rate-limiting enzyme for melanogenesis. Moreover, 2,4,6-triphenyl-1-hexene (1) treatment downregulated tyrosinase, Tyrp-1, and Tyrp-2 expression by inhibiting the microphthalmia-associated transcription factor (MITF). Furthermore, 2,4,6-triphenyl-1-hexene (1) treatment decreased the melanin content in the three-dimensional (3D) human-pigmented epidermis model MelanoDerm and exerted skin-whitening effects. Mechanistically, 2,4,6-triphenyl-1-hexene (1) exerted anti-melanogenic effects by suppressing tyrosinase, Tyrp-1, and Tyrp-2 expression and activities via inhibition of the MITF. Collectively, these findings suggest that 2,4,6-triphenyl-1-hexene (1) is a promising anti-melanogenic agent in the cosmetic industry.


Subject(s)
Alkenes , Bacillus , Melanins , Terphenyl Compounds , Humans , Monophenol Monooxygenase/metabolism , Bacillus/metabolism , Ultraviolet Rays/adverse effects , Cell Line, Tumor , Microphthalmia-Associated Transcription Factor/metabolism , alpha-MSH/pharmacology
5.
Cancer Res Treat ; 56(1): 143-148, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37591780

ABSTRACT

PURPOSE: BRCA1/2 mutations are well-known risk factors for breast and ovarian cancers in women. Risk-reducing salpingo-oophorectomy (RRSO) is the standard treatment for preventing ovarian cancer with BRCA mutations. Postmenopausal syndrome (symptoms after RRSO can be alleviated by hormone replacement therapy (HRT); however, the use of HRT in carriers of BRCA mutations has been controversial because of the concern that HRT increases the risk of breast cancer. This study aimed to evaluate the effects of HRT in BRCA mutation carriers who underwent RRSO. MATERIALS AND METHODS: A total of 151 carriers, who underwent RRSO between 2013 and 2020 after the diagnosis of BRCA1 or BRCA2 mutations were selected and followed up for a median of 3.03 years. Patients were divided into two groups: those who received HRT after RRSO (n=33) and those who did not (n=118). We compared the incidence of breast cancer over time between these two groups. RESULTS: There was no significant difference in the incidence of breast cancer between women who received HRT and those who did not (p=0.229). Multivariate logistic regression analysis, adjusted for age and parity revealed no significant difference in the risk of breast cancer between these two groups (hazard ratio, 0.312; 95% confidence interval, 0.039 to 2.480; p=0.278). CONCLUSION: In this study, we found no relationship between post-RRSO HRT and breast cancer in the population with BRCA mutations. Therefore, healthcare providers may consider the alleviation of symptoms of postmenopausal syndrome through HRT in patients who underwent RRSO.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Female , Humans , Breast Neoplasms/etiology , Breast Neoplasms/genetics , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Genes, BRCA2 , Genes, BRCA1 , Hormone Replacement Therapy/adverse effects , Mutation , Ovarian Neoplasms/genetics
7.
Methods Enzymol ; 686: 235-265, 2023.
Article in English | MEDLINE | ID: mdl-37532402

ABSTRACT

In the Arg/N-degron pathway, single N-terminal (Nt) residues function as N-degrons recognized by UBR box-containing N-recognins that induce substrate ubiquitination and proteasomal degradation. Recent studies led to the discovery of the autophagic Arg/N-degron pathway, in which the autophagic receptor p62/SQSTM1/Sequestosome-1 acts as an N-recognin that binds the Nt-Arg and other destabilizing residues as N-degrons. Upon binding to Nt-Arg, p62 undergoes self-polymerization associated with its cargoes, accelerating the macroautophagic delivery of p62-cargo complexes to autophagosomes leading to degradation by lysosomal hydrolases. This autophagic mechanism is emerging as an important pathway that modulates the lysosomal degradation of various biomaterial ranging from protein aggregates and subcellular organelles to invading pathogens. Chemical mimics of the physiological N-degrons were developed to exert therapeutic efficacy in pathophysiological processes associated with neurodegeneration and other related diseases. Here, we describe the methods to monitor the activities of p62 in a dual role as an N-recognin and an autophagic receptor. The topic includes self-polymerization (for cargo condensation), its interaction with LC3 on autophagic membranes (for cargo targeting), and the degradation of p62-cargo complexes by lysosomal hydrolases. We also discuss the development and use of small molecule mimics of N-degrons that modulate p62-dependent macroautophagy in biological and pathophysiological processes.


Subject(s)
Autophagy , Hydrolases , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Proteolysis , Autophagy/physiology , Hydrolases/metabolism
8.
Biochem Biophys Res Commun ; 677: 190-195, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37603933

ABSTRACT

DEAD box helicase proteins are a family of RNA helicases that participate in various RNA metabolisms such as RNA unwinding, RNA processing, and RNPase activities. A particular DEAD box protein, the DDX53 protein, is primarily expressed in cancer cells and plays a crucial role in tumorigenesis. Numerous studies have revealed that DDX53 interacts with various microRNA and Histone deacetylases. However, its molecular structure and the detailed binding interaction between DDX53 and microRNA or HDAC is still unclear. In this study, we used X-ray crystallography to investigate the 3D structure of the hlicase C-terminal domain of DDX53, and successfully determined its crystal structure at a resolution of 1.97 Å. Subsequently, a functional analysis of RNA was conducted by examining the binding properties thereof with DDX53 by transmission electron microscopy and computing-based molecular docking simulation. The defined 3D model of DDX53 not only provides a structural basis for the fundamental understanding of DDX53 but is also expected to contribute to the field of anti-cancer drug discovery such as structure-based drug discovery and computer-aided drug design.


Subject(s)
DNA Helicases , MicroRNAs , Humans , Molecular Docking Simulation , RNA Helicases , Carcinogenesis , DEAD-box RNA Helicases
9.
Korean Circ J ; 53(10): 710-719, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37559417

ABSTRACT

BACKGROUND AND OBJECTIVES: In previous studies, high homocysteine levels were associated with high cardiovascular mortality. However, these results were inconsistent with those of randomized controlled trials. We aimed to evaluate the causal role of homocysteine on all-cause and cardiovascular mortality using Mendelian randomization (MR) analysis. METHODS: This study included the 10,005 participants in the Namwon Study. In conventional observational analysis, age, sex, survey years, lifestyles, body mass index, comorbidities, and serum folate level were adjusted using multivariate Cox proportional regression. MR using 2-stage least squares regression was used to evaluate the association between genetically predicted plasma homocysteine levels and mortality. Age, sex, and survey years were adjusted for each stage. The methylenetetrahydrofolate reductase (MTHFR) polymorphism was used as an instrumental variable for predicting plasma homocysteine levels. RESULTS: Observed homocysteine levels were positively associated with all-cause (hazard ratio [HR], 1.40; 95% confidence interval [CI], 1.26-1.54) and cardiovascular (HR, 1.62; 95% CI, 1.28-2.06) mortality when plasma homocysteine levels doubled. However, these associations were not significant in MR analysis. The HRs of doubling genetically predicted plasma homocysteine levels for all-cause and cardiovascular mortality were 0.99 (95% CI, 0.62-1.57) and 1.76 (95% CI, 0.54-5.77), respectively. CONCLUSIONS: This MR analysis did not support a causal role for elevated plasma homocysteine concentrations in premature deaths.

10.
J Prev Med Public Health ; 56(3): 282-290, 2023 May.
Article in English | MEDLINE | ID: mdl-37287206

ABSTRACT

OBJECTIVES: This study aimed to evaluate the potential interaction between kidney function and the non-linear association between serum calcium levels and cardiovascular disease (CVD) mortality. METHODS: This study included 8927 participants enrolled in the Dong-gu Study. Albumin-corrected calcium levels were used and categorized into 6 percentile categories: <2.5th, 2.5-25.0th, 25.0-50.0th, 50.0-75.0th, 75.0-97.5th, and >97.5th. Restricted cubic spline analysis was used to examine the non-linear association between calcium levels and CVD mortality. Cox proportional hazard regression was used to estimate hazard ratios (HRs) for CVD mortality according to serum calcium categories. All survival analyses were stratified by the estimated glomerular filtration rate. RESULTS: Over a follow-up period of 11.9±2.8 years, 1757 participants died, of whom 219 died from CVD. A U-shaped association between serum calcium and CVD mortality was found, and the association was more evident in the low kidney function group. Compared to the 25.0-50.0th percentile group for serum calcium levels, both low and high serum calcium tended to be associated with CVD mortality (<2.5th: HR, 6.23; 95% confidence interval [CI], 1.16 to 33.56; >97.5th: HR, 2.56; 95% CI, 0.76 to 8.66) in the low kidney function group. In the normal kidney function group, a similar association was found between serum calcium levels and CVD mortality (<2.5th: HR, 1.37; 95% CI, 0.58 to 3.27; >97.5th: HR, 1.65; 95% CI, 0.70 to 3.93). CONCLUSIONS: We found a non-linear association between serum calcium levels and CVD mortality, suggesting that calcium dyshomeostasis may contribute to CVD mortality, and kidney function may modify the association.


Subject(s)
Calcium , Cardiovascular Diseases , Humans , Adult , Risk Factors , Kidney , Republic of Korea/epidemiology
11.
Korean Circ J ; 53(7): 472-479, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37271750

ABSTRACT

BACKGROUND AND OBJECTIVES: The association between bilirubin and atrial fibrillation (AF) has been evaluated previously in observational studies but with contradictory results. This study evaluated the causal association between serum bilirubin level and AF using Mendelian randomization (MR) analysis. METHODS: This cross-sectional study includes 8,977 participants from the Dong-gu Study. In the observational analysis, multivariate logistic regression was performed to evaluate the association between bilirubin and prevalent AF. To evaluate the causal association between bilirubin and AF, MR analysis was conducted by using the UGT1A1 rs11891311 and rs4148323 polymorphisms as instrumental variables. RESULTS: Elevated serum bilirubin levels were associated with an increased risk for AF in observational analysis (total bilirubin: odds ratio [OR], 1.31; 95% confidence interval [95% CI], 1.15-1.48 per 1 standard deviation [SD]; direct bilirubin: OR, 1.31; 95% CI, 1.18-1.46 per 1 SD), whereas the genetically predicted serum bilirubin levels in MR analysis did not show this association (total bilirubin: OR, 1.02; 95% CI, 0.67-1.53 per 1 SD; direct bilirubin: OR, 1.03; 95% CI, 0.61-1.73 per 1 SD). CONCLUSIONS: Genetically predicted bilirubin levels were not associated with prevalent AF. Thus, the observational association between serum bilirubin levels and AF may be non-causal and affected by reverse causality or unmeasured confounding.

12.
Mol Neurodegener ; 18(1): 41, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37355598

ABSTRACT

BACKGROUND: There are currently no disease-modifying therapeutics for Parkinson's disease (PD). Although extensive efforts were undertaken to develop therapeutic approaches to delay the symptoms of PD, untreated α-synuclein (α-syn) aggregates cause cellular toxicity and stimulate further disease progression. PROTAC (Proteolysis-Targeting Chimera) has drawn attention as a therapeutic modality to target α-syn. However, no PROTACs have yet shown to selectively degrade α-syn aggregates mainly owing to the limited capacity of the proteasome to degrade aggregates, necessitating the development of novel approaches to fundamentally eliminate α-syn aggregates. METHODS: We employed AUTOTAC (Autophagy-Targeting Chimera), a macroautophagy-based targeted protein degradation (TPD) platform developed in our earlier studies. A series of AUTOTAC chemicals was synthesized as chimeras that bind both α-syn aggregates and p62/SQSTM1/Sequestosome-1, an autophagic receptor. The efficacy of Autotacs was evaluated to target α-syn aggregates to phagophores and subsequently lysosomes for hydrolysis via p62-dependent macroautophagy. The target engagement was monitored by oligomerization and localization of p62 and autophagic markers. The therapeutic efficacy to rescue PD symptoms was characterized in cultured cells and mice. The PK/PD (pharmacokinetics/pharmacodynamics) profiles were investigated to develop an oral drug for PD. RESULTS: ATC161 induced selective degradation of α-syn aggregates at DC50 of ~ 100 nM. No apparent degradation was observed with monomeric α-syn. ATC161 mediated the targeting of α-syn aggregates to p62 by binding the ZZ domain and accelerating p62 self-polymerization. These p62-cargo complexes were delivered to autophagic membranes for lysosomal degradation. In PD cellular models, ATC161 exhibited therapeutic efficacy to reduce cell-to-cell transmission of α-syn and to rescue cells from the damages in DNA and mitochondria. In PD mice established by injecting α-syn preformed fibrils (PFFs) into brain striata via stereotaxic surgery, oral administration of ATC161 at 10 mg/kg induced the degradation of α-syn aggregates and reduced their propagation. ATC161 also mitigated the associated glial inflammatory response and improved muscle strength and locomotive activity. CONCLUSION: AUTOTAC provides a platform to develop drugs for PD. ATC161, an oral drug with excellent PK/PD profiles, induces selective degradation of α-syn aggregates in vitro and in vivo. We suggest that ATC161 is a disease-modifying drug that degrades the pathogenic cause of PD.


Subject(s)
Parkinson Disease , Mice , Animals , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Autophagy , Proteolysis , Cells, Cultured , Brain/metabolism
13.
Clin Exp Rheumatol ; 41(5): 1149-1154, 2023 05.
Article in English | MEDLINE | ID: mdl-36226605

ABSTRACT

OBJECTIVES: No previous studies have explored the effect of folate deficiency on the severity of osteoarthritis (OA). Therefore, we investigated the relationship between folate level and features on knee and hand radiographs in a large, population-based OA cohort. METHODS: Among 9,260 subjects enrolled in the Dong-gu study, 2,489 who had knee and hand joint radiographs were included. Of these, subjects with a history of amputation or total knee replacement were excluded. Serum folate levels were measured using blood samples collected at the time of enrolment and stored. A semi-quantitative system was used to grade the severity of hand and knee x-ray changes. Linear regression was performed to assess relationships between serum folate levels and knee and hand radiographic scores after adjusting for age, sex, body mass index, smoking, alcohol consumption, education, physical activity, occupation, vitamin D, and ferritin. RESULTS: A total of 2,322 subjects were recruited. After adjusting for confounders, participants with folate deficiency (<4 ng/mL) had higher total (p<0.001), osteophyte (p<0.001), joint space narrowing (p=0.002), tibial attrition (p<0.001), and sclerosis (p=0.005) scores for knee joint radiographs compared to participants with a normal folate level. After adjusting for confounders, the radiographic scores for hand joints did not differ between the groups. CONCLUSIONS: Folate deficiency is associated with increased radiographic severity of OA in knee joints, but not in hand joints. Further studies are needed to explore the differential effects of folate on the severity of knee and hand OA.


Subject(s)
Hand Joints , Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/diagnostic imaging , Hand Joints/diagnostic imaging , Knee Joint/diagnostic imaging , Hand/diagnostic imaging , Folic Acid
14.
Autophagy ; 19(6): 1642-1661, 2023 06.
Article in English | MEDLINE | ID: mdl-36184612

ABSTRACT

In the N-degron pathway, N-recognins recognize cognate substrates for degradation via the ubiquitin (Ub)-proteasome system (UPS) or the autophagy-lysosome system (hereafter autophagy). We have recently shown that the autophagy receptor SQSTM1/p62 (sequestosome 1) is an N-recognin that binds the N-terminal arginine (Nt-Arg) as an N-degron to modulate autophagic proteolysis. Here, we show that the N-degron pathway mediates pexophagy, in which damaged peroxisomal fragments are degraded by autophagy under normal and oxidative stress conditions. This degradative process initiates when the Nt-Cys of ACAD10 (acyl-CoA dehydrogenase family, member 10), a receptor in pexophagy, is oxidized into Cys sulfinic (CysO2) or sulfonic acid (CysO3) by ADO (2-aminoethanethiol (cysteamine) dioxygenase). Under oxidative stress, the Nt-Cys of ACAD10 is chemically oxidized by reactive oxygen species (ROS). The oxidized Nt-Cys2 is arginylated by ATE1-encoded R-transferases, generating the RCOX N-degron. RCOX-ACAD10 marks the site of pexophagy via the interaction with PEX5 and binds the ZZ domain of SQSTM1/p62, recruiting LC3+-autophagic membranes. In mice, knockout of either Ate1 responsible for Nt-arginylation or Sqstm1/p62 leads to increased levels of peroxisomes. In the cells from patients with peroxisome biogenesis disorders (PBDs), characterized by peroxisomal loss due to uncontrolled pexophagy, inhibition of either ATE1 or SQSTM1/p62 was sufficient to recover the level of peroxisomes. Our results demonstrate that the Cys-N-degron pathway generates an N-degron that regulates the removal of damaged peroxisomal membranes along with their contents. We suggest that tannic acid, a commercially available drug on the market, has a potential to treat PBDs through its activity to inhibit ATE1 R-transferases.Abbreviations: ACAA1, acetyl-Coenzyme A acyltransferase 1; ACAD, acyl-Coenzyme A dehydrogenase; ADO, 2-aminoethanethiol (cysteamine) dioxygenase; ATE1, arginyltransferase 1; CDO1, cysteine dioxygenase type 1; ER, endoplasmic reticulum; LIR, LC3-interacting region; MOXD1, monooxygenase, DBH-like 1; NAC, N-acetyl-cysteine; Nt-Arg, N-terminal arginine; Nt-Cys, N-terminal cysteine; PB1, Phox and Bem1p; PBD, peroxisome biogenesis disorder; PCO, plant cysteine oxidase; PDI, protein disulfide isomerase; PTS, peroxisomal targeting signal; R-COX, Nt-Arg-CysOX; RNS, reactive nitrogen species; ROS, reactive oxygen species; SNP, sodium nitroprusside; UBA, ubiquitin-associated; UPS, ubiquitinproteasome system.


Subject(s)
Autophagy , Macroautophagy , Animals , Mice , Sequestosome-1 Protein/metabolism , Autophagy/physiology , Reactive Oxygen Species/metabolism , Cysteamine , Cysteine , Ubiquitin/metabolism , Arginine/metabolism , Transferases/metabolism
15.
Epidemiol Health ; 44: e2022092, 2022.
Article in English | MEDLINE | ID: mdl-36265515

ABSTRACT

Objectives: We evaluated whether the coronavirus disease 2019 (COVID-19) pandemic caused delays in the diagnosis and treatment of colorectal cancer (CRC) in Korea, where there have been no regional or hospital lockdowns during the pandemic period. Methods: Data on CRC patients (n=1,445) diagnosed in Gwangju Metropolitan City and Jeonnam Province between January 2019 and December 2021 were assessed. The stage at the time of CRC diagnosis, route to diagnosis, time to initial cancer treatment, and length of hospital admission were compared before and during the COVID-19 pandemic. Logistic regression was also performed to identify factors associated with the risk for diagnosis in an advanced stage. Results: No negative effects indicating a higher CRC stage at diagnosis or delayed treatment during the pandemic were observed. Instead, the risk for an advanced stage at diagnosis (TNM stage III/IV) decreased in CRC patients diagnosed during the pandemic (odds ratio, 0.768; 95% confidence interval, 0.647 to 0.911). No significant differences in the interval from diagnosis to operation or chemotherapy were observed. Conclusion: No negative effects on CRC diagnosis and treatment were found until the end of 2021, which may be related to the small magnitude of the COVID-19 epidemic, the absence of a lockdown policy in Korea, and the rebound in the number of diagnostic colonoscopy procedures in 2021.


Subject(s)
COVID-19 , Colorectal Neoplasms , Humans , COVID-19/epidemiology , Pandemics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/epidemiology , Communicable Disease Control , Republic of Korea/epidemiology , Early Detection of Cancer , COVID-19 Testing
17.
Biosens Bioelectron ; 215: 114551, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35839622

ABSTRACT

Monitoring food freshness/spoilage is important to ensure food quality and safety. Current methods of food quality monitoring are mostly time-consuming and labor intensive processes that require massive analytical equipment. In this study, we developed a portable bioelectronic nose (BE-nose) integrated with trace amine-associated receptor (TAAR) nanodiscs (NDs), allowing food quality monitoring via the detection of food spoilage indicators, including the biogenic amines cadaverine (CV) and putrescine (PT). The olfactory receptors TAAR13c and TAAR13d, which have specific affinities for CV and PT, were produced and successfully reconstituted in ND structures. TAAR13 NDs BE-nose-based side-gated field-effect transistor (SG-FET) system was constructed by utilizing a graphene micropattern (GM) into which two types of olfactory NDs (TAAR13c ND and TAAR13d ND) were introduced, and this system showed ultrahigh sensitivity for a limit of detection (LOD) of 1 fM for CV and PT. Moreover, the binding affinities between the TAAR13 NDs and the indicators were confirmed by a tryptophan fluorescence quenching assay and biosimulations, in which the specific binding site was confirmed. Gas-phase indicators were detected by the TAAR13 NDs BE-nose platform, and the LODs for CV and PT were confirmed to be 26.48 and 7.29 ppb, respectively. In addition, TAAR13 NDs BE-nose was fabricated with commercial gas sensors as a portable platform for the measurement of NH3 and H2S, multiplexed monitoring was achieved with similar performance, and the change ratio of the indicators was observed in a real sample. The integration of commercial gas sensors on a BE-nose enhanced the accuracy and reliability for the quality monitoring of real food samples. These results indicate that the portable TAAR13 NDs BE-nose can be used to monitor CV and PT over a wide range of concentrations, therefore, the electronic nose platform can be utilized for monitoring the freshness/spoilage step in various foods.


Subject(s)
Biosensing Techniques , Receptors, Odorant , Biosensing Techniques/methods , Cadaverine , Electronic Nose , Putrescine , Receptors, Odorant/chemistry , Reproducibility of Results
18.
Clin Proteomics ; 19(1): 28, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35842602

ABSTRACT

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) virus is an emerging infectious virus which causes severe hemorrhage, thrombocytopenia, and leukopenia, with a high fatality rate. Since there is no approved therapeutics or vaccines for SFTS, early diagnosis is essential to manage this infectious disease. METHODS: Here, we tried to detect SFTS virus in serum samples from SFTS patients by proteomic analysis. Firstly, in order to obtain the reference MS/MS spectral data of SFTS virus, medium from infected Vero cell culture was used for shotgun proteomic analysis. Then, tryptic peptides in sera from SFTS patients were confirmed by comparative analysis with the reference MS/MS spectral data of SFTS virus. RESULTS: Proteomic analysis of culture medium successfully discovered tryptic peptides from all the five antigen proteins of SFTS virus. The comparative spectral analysis of sera of SFTS patients revealed that the N-terminal tryptic peptide of the nucleocapsid (N) protein is the major epitope of SFTS virus detected in the patient samples. The prevalence of the peptides was strongly correlated with the viral load in the clinical samples. CONCLUSIONS: Proteomic analysis of SFTS patient samples revealed that nucleocapsid (N) protein is the major antigen proteins in sera of SFTS patients and N-terminal tryptic peptide of the N protein might be a useful proteomic target for direct detection of SFTS virus. These findings suggest that proteomic analysis could be an alternative tool for detection of pathogens in clinical samples and diagnosis of infectious diseases.

19.
Adv Mater Interfaces ; 9(14): 2102046, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35538927

ABSTRACT

A serological immunoassay based on enzyme-linked immunosorbent assay (ELISA) is a crucial tool for screening and identification of human SARS-CoV-2 seroconversion. Various immunoassays are developed to detect the spike 1 (S1) and nucleocapsid (NP) proteins of SARS-CoV-2; however, these serological tests have low sensitivity. Here, a novel microplate (MP) is developed on which a ZnO nanowire (NW) is fabricated by a modified hydrothermal synthesis method. This plate is coated with SARS-CoV-2 NP and used as a fluorescent immunoassay (FIA) to detect antibodies specific for SARS-CoV-2 NP. Compared with the bare MP, the ZnO-NW MP binds high levels (up to 5 µg mL-1) of SARS-CoV-2 NP tagged to histidine without any surface treatment. A novel serological assay based on the ZnO-NW MP is more sensitive than a commercial immunoassay, enabling early detection (within <5 days of a reverse transcription polymerase chain reaction-confirmed COVID-19 infection) of anti-SARS-CoV-2 NP IgG antibodies in asymptomatic patients with COVID-19. This is the first assay to detect early antibody responses to SARS-CoV-2 in asymptomatic patients. Therefore, this serological assay will facilitate accurate diagnosis of COVID-19, as well as estimation of COVID-19 prevalence and incidence.

20.
Korean Circ J ; 52(3): 220-230, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35129315

ABSTRACT

BACKGROUND AND OBJECTIVES: Previous observational studies presented a positive association between alcohol and atrial fibrillation (AF). However, previous studies using genetic polymorphisms on the causal relationship between alcohol consumption and AF have reported conflicting results. This study aimed to evaluate the causality between alcohol consumption and AF using the aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphism, which is the genetic variant with the most potent effect on drinking behavior. METHODS: A total of 8,964 participants from the Dong-gu Study were included in the present study. The causal association between alcohol consumption and AF was evaluated through a Mendelian randomization (MR) analysis using the ALDH2 rs671 polymorphism as an instrumental variable. RESULTS: No significant relationship between alcohol consumption and AF was found in the observational analysis. However, the genetic analysis using the ALDH2 polymorphism showed a significant association in men. In the MR analysis, genetically predicted daily alcohol consumption was positively related to AF. CONCLUSIONS: MR analysis revealed a significant association between the amount of alcohol consumption and AF, which suggests that the association may be causal.

SELECTION OF CITATIONS
SEARCH DETAIL
...