Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Protein Sci ; 31(11): e4468, 2022 11.
Article in English | MEDLINE | ID: mdl-36214056

ABSTRACT

The vaccinia virus expression system is known for the efficient production of recombinant proteins with "appropriate" posttranslational modification using desired mammalian cell lines. However, being a replication competent virus, vaccinia virus poses a health threat to immunocompromised individuals and requires biosafety level 2 (BSL2) laboratory precautions, thereby restricting its use by the scientific community. Development of the host range restricted modified vaccinia Ankara (MVA) system has allowed researchers to work with a safer virus even at BSL1. Here, we report on the use of an improved second generation MVA viral system incorporating two selective markers and fluorescent proteins for easier recombinant virus identification. Notably, we demonstrate that this novel system is capable of producing secreted recombinant proteins, a finding not previously reported. Through purification and characterization of wild type and mutant platelet-derived growth factor D (PDGF D) dimer species, we demonstrate this system is capable of producing the latent full-length PDGF D dimer, partially processed intermediate dimer (hemidimer), as well as fully processed growth factor domain dimer that show chemical integrity and biological activity. Importantly, this system is amenable to scaling up for the mass production of recombinant PDGF D (rPDGF D) dimer species.


Subject(s)
Vaccinia virus , Vaccinia , Humans , Animals , Vaccinia virus/genetics , Virus Replication , Platelet-Derived Growth Factor , Recombinant Proteins/genetics , Mammals
2.
J Cell Physiol ; 237(11): 4180-4196, 2022 11.
Article in English | MEDLINE | ID: mdl-35994698

ABSTRACT

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death receptor-mediated extrinsic apoptosis, specifically in cancer cells, and Bid (BH3-interacting domain death agonist) plays an important role in TRAIL-induced apoptosis. Ferroptosis is a newly defined form of regulated cell death known to be distinct from other forms of cell death. However, our previous studies have shown that ferroptosis shares common pathways with other types of programmed cell death such as apoptosis. In this study, we investigated the role of Bid in the crosstalk between the ferroptotic agent-induced endoplasmic reticulum (ER) stress response and TRAIL-induced apoptosis. When human colorectal carcinoma HCT116 cells were treated with the ferroptosis-inducing agents artesunate and erastin in combination with TRAIL, TRAIL-induced activation of caspase-8 was enhanced, and subsequently, the truncation of Bid was increased. Similar results were observed when ovarian adenocarcinoma OVCAR-3 cells were treated with the ferroptotic agents in combination with TRAIL. Results from studies with Bid mutants reveal that the truncation of Bid and the presence of intact BH3 domains are critical for synergistic apoptosis. Nonfunctional Bid mutants were not able to activate the mitochondria-dependent apoptosis pathway, which is required for the conversion of p19 to p17, the active form of caspase-3. These results indicate that Bid plays a critical role in the crosstalk between the ferroptotic agent-induced ER stress response and TRAIL-induced apoptosis.


Subject(s)
Apoptosis , Ovarian Neoplasms , Humans , Female , Cell Line, Tumor , Ovarian Neoplasms/pathology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , BH3 Interacting Domain Death Agonist Protein/genetics , BH3 Interacting Domain Death Agonist Protein/metabolism , Caspase 8/metabolism , Endoplasmic Reticulum Stress , Tumor Necrosis Factor-alpha/metabolism
3.
J Biol Chem ; 298(6): 101981, 2022 06.
Article in English | MEDLINE | ID: mdl-35472332

ABSTRACT

Mesenchymal stem cells (MSCs) are adult stem cell populations and exhibit great potential in regenerative medicine and oncology. Platelet-derived growth factors (PDGFs) are well known to regulate MSC biology through their chemotactic and mitogenic properties. However, their direct roles in the regulation of MSC lineage commitment are unclear. Here, we show that PDGF D promotes the differentiation of human bone marrow mesenchymal stem cells (hBMSCs) into osteoblasts and inhibits hBMSC differentiation into adipocytes. We demonstrate that PDGF D-induced ß-actin expression and polymerization are essential for mediating this differential regulation of osteoblastogenesis and adipogenesis. Interestingly, we found that PDGF D induces massive upward molecular weight shifts of its cognate receptor, PDGF receptor beta (ß-PDGFR) in hBMSCs, which was not observed in fibroblasts. Proteomic analysis indicated that the E3 ubiquitin ligase HECT, UBA, and WWE domain-containing protein 1 (HUWE1) associates with the PDGF D-activated ß-PDGFR signaling complex in hBMSCs, resulting in ß-PDGFR polyubiquitination. In contrast to the well-known role of ubiquitin in protein degradation, we provide evidence that HUWE1-mediated ß-PDGFR polyubiquitination delays ß-PDGFR internalization and degradation, thereby prolonging AKT signaling. Finally, we demonstrate that HUWE1-regulated ß-PDGFR signaling is essential for osteoblastic differentiation of hBMSCs, while being dispensable for PDGF D-induced hBMSC migration and proliferation as well as PDGF D-mediated inhibition of hBMSC differentiation into adipocytes. Taken together, our findings provide novel insights into the molecular mechanism by which PDGF D regulates the commitment of hBMSCs into the osteoblastic lineage.


Subject(s)
Lymphokines/metabolism , Mesenchymal Stem Cells , Platelet-Derived Growth Factor/metabolism , Ubiquitin-Protein Ligases , Cell Differentiation , Cell Proliferation , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Proteomics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
4.
Cells ; 10(10)2021 10 12.
Article in English | MEDLINE | ID: mdl-34685701

ABSTRACT

A hallmark of malignant solid tumor is extracellular acidification coupled with metabolic switch to aerobic glycolysis. Using the human MCF10A progression model of breast cancer, we show that glycolytic switch and extracellular acidosis in aggressive cancer cells correlate with increased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), known to induce intracellular signal transduction through the interaction with its cell surface receptor CD63, independent of its metalloproteinase inhibitory function. We found that, in aggressive breast carcinoma, the TIMP-1-CD63 signaling axis induced a metabolic switch by upregulating the rate of aerobic glycolysis, lowering mitochondrial respiration, preventing intracellular acidification, and inducing extracellular acidosis. Carbonic anhydrase IX (CAIX), a regulator of cellular pH through the hydration of metabolically released pericellular CO2, was identified as a downstream mediator of the TIMP-1-CD63 signaling axis responsible for extracellular acidosis. Consistently with our previous study, the TIMP-1-CD63 signaling promoted survival of breast cancer cells. Interestingly, breast carcinoma cell survival was drastically reduced upon shRNA-mediated knockdown of CAIX expression, demonstrating the significance of CAIX-regulated pH in the TIMP-1-CD63-mediated cancer cell survival. Taken together, the present study demonstrates the functional significance of TIMP-1-CD63-CAXI signaling axis in the regulation of tumor metabolism, extracellular acidosis, and survival of breast carcinoma. We propose that this axis may serve as a novel therapeutic target.


Subject(s)
Breast Neoplasms/metabolism , Tetraspanin 30/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Acids/metabolism , Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/metabolism , Cell Line, Tumor , Cell Survival , Disease Progression , Extracellular Space/metabolism , Female , Humans , Models, Biological , Neoplasm Invasiveness
5.
Cell Death Dis ; 12(11): 997, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34697296

ABSTRACT

The autophagy-lysosome pathway and apoptosis constitute vital determinants of cell fate and engage in a complex interplay in both physiological and pathological conditions. Central to this interplay is the archetypal autophagic cargo adaptor p62/SQSTM1/Sequestosome-1 which mediates both cell survival and endoplasmic reticulum stress-induced apoptosis via aggregation of ubiquitinated caspase-8. Here, we investigated the role of p62-mediated apoptosis in head and neck squamous cell carcinoma (HNSCC), which can be divided into two groups based on human papillomavirus (HPV) infection status. We show that increased autophagic flux and defective apoptosis are associated with radioresistance in HPV(-) HNSCC, whereas HPV(+) HNSCC fail to induce autophagic flux and readily undergo apoptotic cell death upon radiation treatments. The degree of radioresistance and tumor progression of HPV(-) HNSCC respectively correlated with autophagic activity and cytosolic levels of p62. Pharmacological activation of the p62-ZZ domain using small molecule ligands sensitized radioresistant HPV(-) HNSCC cells to ionizing radiation by facilitating p62 self-polymerization and sequestration of cargoes leading to apoptosis. The self-polymerizing activity of p62 was identified as the essential mechanism by which ubiquitinated caspase-8 is sequestered into aggresome-like structures, without which irradiation fails to induce apoptosis in HNSCC. Our results suggest that harnessing p62-dependent sequestration of ubiquitinated caspase-8 provides a novel therapeutic avenue in patients with radioresistant tumors.


Subject(s)
Apoptosis/immunology , Radiation, Ionizing , Sequestosome-1 Protein/metabolism , Animals , Caspase 8 , Humans , Mice , Radiation Injuries , Signal Transduction
6.
Cancer Cell Int ; 21(1): 507, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34548097

ABSTRACT

BACKGROUND: The Discoidin Domain Receptor 1 (DDR1) is one of the two members of a unique family of receptor tyrosine kinase receptors that signal in response to collagen, which has been implicated in cancer progression. Here, we examined the expression of DDR1 in prostate cancer (PCa), and assessed its potential value as a prognostic marker, as a function of grade, stage and other clinicopathologic parameters. METHODS: We investigated the association between the expression level and subcellular localization of DDR1 protein and PCa aggressiveness by immunohistochemistry, using tissue microarrays (TMAs) encompassing 200 cases of PCa with various Gleason scores (GS) and pathologic stages with matched normal tissue, and a highly specific monoclonal antibody. RESULTS: DDR1 was found to be localized in the membrane, cytoplasm, and nuclear compartments of both normal and cancerous prostate epithelial cells. Analyses of DDR1 expression in low GS (≤ 7[3 + 4]) vs high GS (≥ 7[4 + 3]) tissues showed no differences in nuclear or cytoplasmic DDR1in either cancerous or adjacent normal tissue cores. However, relative to normal-matched tissue, the percentage of cases with higher membranous DDR1 expression was significantly lower in high vs. low GS cancers. Although nuclear localization of DDR1 was consistently detected in our tissue samples and also in cultured human PCa and normal prostate-derived cell lines, its presence in that site could not be associated with disease aggressiveness. No associations between DDR1 expression and overall survival or biochemical recurrence were found in this cohort of patients. CONCLUSION: The data obtained through multivariate logistic regression model analysis suggest that the level of membranous DDR1 expression status may represent a potential biomarker of utility for better determination of PCa aggressiveness.

7.
Cancers (Basel) ; 13(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801879

ABSTRACT

Despite recent advances in therapeutic modalities such as radiochemotherapy, the long-term prognosis for patients with advanced head and neck squamous cell carcinoma (HNSCC), especially nonviral HNSCC, remains very poor, while survival of patients with human papillomavirus (HPV)-associated HNSCC is greatly improved after radiotherapy. The goal of this study is to develop a mechanism-based treatment protocol for high-risk patients with HPV-negative HNSCC. To achieve our goal, we have investigated molecular mechanisms underlying differential radiation sensitivity between HPV-positive and -negative HNSCC cells. Here, we found that autophagy is associated with radioresistance in HPV-negative HNSCC, whereas apoptosis is associated with radiation sensitive HPV-positive HNSCC. Interestingly, we found that photodynamic therapy (PDT) directed at the endoplasmic reticulum (ER)/mitochondria initially induces paraptosis followed by apoptosis. This led to a substantial increase in radiation responsiveness in HPV-negative HNSCC, while the same PDT treatment had a minimal effect on HPV-positive cells. Here, we provide evidence that the autophagic adaptor p62 mediates signal relay for the induction of apoptosis, promoting ionizing radiation (XRT)-induced cell death in HPV-negative HNSCC. This work proposes that ER/mitochondria-targeted PDT can serve as a radiosensitizer in intrinsically radioresistant HNSCC that exhibits an increased autophagic flux.

8.
Photochem Photobiol ; 97(4): 837-840, 2021 07.
Article in English | MEDLINE | ID: mdl-33570777

ABSTRACT

A concurrent human papilloma virus (HPV) infection potentiates the efficacy of ionizing radiation for treatment of head and neck cancer by promoting apoptosis. Studies in cell culture indicated an opposite effect for photodynamic therapy (PDT) when this leads to mitochondrial and ER photodamage. The explanation for this difference in PDT efficacy remains to be established. While apoptosis was impaired in HPV(-) cells, such cells can be killed via photodamage directed at the ER: this leads to a nonapoptotic death pathway termed paraptosis. No differences in photosensitizer uptake or reactive oxygen species (ROS) production were observed in HPV(+) vs. HPV(-) tumors. We now provide evidence that death pathways initiated by ER/mitochondrial photodamage leading to either paraptosis or apoptosis are impaired in an HPV(+) head and neck cell line. These results illustrate the complex determinants of PDT efficacy, a topic that has yet to be fully explored.


Subject(s)
Photochemotherapy , Apoptosis/drug effects , Cell Line, Tumor , Humans , Papillomavirus Infections/drug therapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use
9.
Sci Rep ; 10(1): 2099, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034211

ABSTRACT

Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a pleiotropic protein, promoting both tumor-suppressive and tumor-promoting activities. While TIMP-1 is primarily known as an endogenous inhibitor of matrix metalloproteinases (MMPs) and thus associated with tumor cell invasion, clinical studies demonstrated increased expression of TIMP-1 and its association with poor prognosis in cancer. Non-MMP-inhibitory and oncogenic functions of TIMP-1 are mediated by induction of intracellular signaling via its cell surface receptor CD63, a tetraspanin. The present study investigates the structure-function relationship of TIMP-1 for its interaction with CD63, which may eventually help design a novel approach for targeting TIMP-1's pro-oncogenic activity without interfering its tumor suppressive MMP-inhibitory function. Importantly, our analysis includes TIMP-1/CD63 interactions at the cell surface of live cells. Here, we demonstrate that the 9 C-terminal amino acid residues of TIMP-1 and the large extracellular loop of CD63 are required for their interaction. Considering that the N-terminal half of TIMP-1 is sufficient for TIMP-1's MMP-inhibitory activity, we propose that those C-terminal amino acid residues are a potentially targetable motif of TIMP-1 oncogenic activity. As a proof of concept, we present the potential for the development of neutralizing antibodies against the C-terminal motif of TIMP-1 for disruption of TIMP-1 interaction with CD63 and the subsequent signal transduction.


Subject(s)
Neoplasms/metabolism , Tetraspanin 30/metabolism , Tissue Inhibitor of Metalloproteinase-1/chemistry , HEK293 Cells , Humans , Neoplasms/drug therapy , Neoplasms/enzymology , Structure-Activity Relationship , Tissue Inhibitor of Metalloproteinase-1/metabolism , Tissue Inhibitor of Metalloproteinase-1/physiology , Two-Hybrid System Techniques
10.
Sci Rep ; 10(1): 2309, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32047176

ABSTRACT

The Discoidin Domain Receptors (DDRs) constitute a unique set of receptor tyrosine kinases that signal in response to collagen. Using an inducible expression system in human HT1080 fibrosarcoma cells, we investigated the role of DDR1b and DDR2 on primary tumour growth and experimental lung metastases. Neither DDR1b nor DDR2 expression altered tumour growth at the primary site. However, implantation of DDR1b- or DDR2-expressing HT1080 cells with collagen I significantly accelerated tumour growth rate, an effect that could not be observed with collagen I in the absence of DDR induction. Interestingly, DDR1b, but not DDR2, completely hindered the ability of HT1080 cells to form lung colonies after intravenous inoculation, suggesting a differential role for DDR1b in primary tumour growth and lung colonization. Analyses of tumour extracts revealed specific alterations in Hippo pathway core components, as a function of DDR and collagen expression, that were associated with stimulation of tumour growth by DDRs and collagen I. Collectively, these findings identified divergent effects of DDRs on primary tumour growth and experimental lung metastasis in the HT1080 xenograft model and highlight the critical role of fibrillar collagen and DDRs in supporting the growth of tumours thriving within a collagen-rich stroma.


Subject(s)
Biomarkers, Tumor/metabolism , Collagen Type I/metabolism , Discoidin Domain Receptor 1/metabolism , Discoidin Domain Receptor 2/metabolism , Fibrillar Collagens/metabolism , Fibrosarcoma/pathology , Lung Neoplasms/prevention & control , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Discoidin Domain Receptor 1/genetics , Discoidin Domain Receptor 2/genetics , Female , Fibrosarcoma/genetics , Fibrosarcoma/metabolism , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice , Mice, Nude , Phosphorylation , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
11.
Photochem Photobiol ; 96(3): 652-657, 2020 05.
Article in English | MEDLINE | ID: mdl-31408910

ABSTRACT

Efficacy of ionizing radiation (I/R) was compared with phototoxic effects of photodynamic therapy (PDT) in vitro using two cell lines derived from patients with head and neck squamous cell carcinoma (HNSCC). A cell line derived from a donor with a human papilloma virus (HPV) infection was more responsive to I/R but significantly less responsive to PDT than a cell line derived from an HPV-free patient. Cell death after I/R in the HPV(+) cell line was associated with increased DEVDase activity, a hallmark of apoptosis. The HPV(-) line was considerably less responsive to I/R, with DEVDase activity greatly reduced, suggesting an impaired apoptotic program. In contrast, the HPV(-) cells were readily killed by PDT when the ER was among the targets for photodamage. While DEVDase activity was enhanced, the death pathway appears to involve paraptosis until the degree of photodamage reached the LD99 range. These data suggest that PDT-induced paraptosis can be a death pathway for cells with an impaired apoptotic program.


Subject(s)
Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/radiotherapy , Papillomaviridae/isolation & purification , Photochemotherapy/methods , Radiation, Ionizing , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Apoptosis/drug effects , Cell Line, Tumor , Head and Neck Neoplasms/virology , Humans , Photosensitizing Agents/pharmacology , Squamous Cell Carcinoma of Head and Neck/virology
12.
Growth Factors ; 37(3-4): 131-145, 2019 08.
Article in English | MEDLINE | ID: mdl-31542979

ABSTRACT

Despite strong evidence for the involvement of PDGF signaling in breast cancer, little is known about the PDGF ligand responsible for PDGFR activation during breast cancer progression. Here, we found PDGF-C to be highly expressed in breast carcinoma cell lines. Immunohistochemical analysis of invasive breast cancer revealed an association between increased PDGF-C expression and lymph node metastases, Ki-67 proliferation index, and poor disease-free survival. We also identified a PDGF-C splice variant encoding truncated PDGF-C (t-PDGF-C) isoform lacking the signal peptide and the N-terminal CUB domain. While t-PDGF C homodimer is retained intracellularly, it can be secreted as a heterodimer with full-length PDGF-C (FL-PDGF-C). PDGF-C downregulation reduced anchorage-independent growth and matrigel invasion of MDA-MB-231 cells. Conversely, ectopic expression of t-PDGF-C enhanced phenotypic transformation and invasion in BT-549 cells expressing endogenous FL-PDGF-C. The present study provides new insights into the functional significance of PDGF-C and its splice variant in human breast cancer.


Subject(s)
Breast Neoplasms/pathology , Lymphatic Metastasis/genetics , Lymphokines/genetics , Lymphokines/metabolism , Platelet-Derived Growth Factor/genetics , Platelet-Derived Growth Factor/metabolism , Cell Line, Tumor , Disease-Free Survival , Female , Humans , Lymphatic Metastasis/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction
13.
Oncotarget ; 8(31): 51530-51541, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28881665

ABSTRACT

HPV-positive oropharyngeal cancer patients experience significantly lower locoregional recurrence and higher overall survival in comparison with HPV-negative patients, especially among those who received radiation therapy. The goal of the present study is to investigate the molecular mechanisms underlying the differential radiation sensitivity between HPV-negative and HPV-positive head and neck squamous cell carcinoma (HNSCC). Here, we show that HPV-negative HNSCC cells exhibit increased glucose metabolism as evidenced by increased production of lactate, while HPV-positive HNSCC cells effectively utilize mitochondrial respiration as evidenced by increased oxygen consumption. HPV-negative cells express HIF1α and its downstream mediators of glucose metabolism such as hexokinase II (HKII) and carbonic anhydrase IX (CAIX) at higher levels, while the expression level of cytochrome c oxidase (COX) was noticeably higher in HPV-positive HNSCC. In addition, the expression levels of pyruvate dehydrogenase kinases (PDKs), which inhibit pyruvate dehydrogenase activity, thereby preventing entry of pyruvate into the mitochondrial tricarboxylic acid (TCA) cycle, were much higher in HPV-negative HNSCC compared to those in HPV-positive cells. Importantly, a PDK inhibitor, dichloroacetate, effectively sensitized HPV-negative cells to irradiation. Lastly, we found positive interactions between tonsil location and HPV positivity for COX intensity and COX/HKII index ratio as determined by immunohistochemical analysis. Overall survival of patients with HNSCC at the tonsil was significantly improved with an increased COX expression. Taken together, the present study provides molecular insights into the mechanistic basis for the differential responses to radiotherapy between HPV-driven vs. spontaneous or chemically induced oropharyngeal cancer.

14.
J Radiat Oncol ; 5(3): 279-286, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27746859

ABSTRACT

OBJECTIVE: The objective of this study was to investigate whether cancer specific survival in rectal cancer patients is affected by patient-related factors, conditional on radiation treatment. METHODS: 359 invasive rectal cancer patients who consented and provided questionnaire data for a population-based case-control study of colorectal cancer in Metropolitan Detroit were included in this study. Their vital status was ascertained through to the population-based cancer registry. Hazard ratios (HR) for cancer specific and other deaths and 95% confidence intervals (CIs) were calculated according to selected patients' characteristics, stratified by radiation status, using joint Cox proportional hazards models. RESULTS: A total of 159 patients were found to be deceased after the median follow-up of 9.2 years, and 70% of them were considered to be cancer specific. Smoking and a history of diabetes were associated with an increased probability of deaths from other causes (HR 3.20, 95% CI 1.72-5.97 and HR 2.02, 95% CI 0.98-4.16, respectively), while regular use of non-steroidal anti-inflammatory drugs (NSAIDs) was inversely correlated with cancer-specific mortality (HR 0.50, 95% CI 0.30-0.81). Furthermore, the associations of smoking and NSAIDs with the two different types of deaths (cancer vs others) significantly varied with radiation status (P-values for the interactions= 0.014 for both). In addition, we observed a marginally significantly reduced risk of cancer specific deaths in the patients who had the relative ketogenic diet overall (HR=0.49, 95% 0.23-1.02). CONCLUSION: Further research is warranted to confirm these results in order to develop new interventions to improve outcome from radiation treatment.

15.
J Transl Med ; 14: 72, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26975354

ABSTRACT

BACKGROUND: Characterization of genes linked to bone metastasis is critical for identification of novel prognostic or predictive biomarkers and potential therapeutic targets in metastatic castrate-resistant prostate cancer (mCRPC). Although bone marrow core biopsies (BMBx) can be obtained for gene profiling, the procedure itself is invasive and uncommon practice in mCRPC patients. Conversely, circulating tumor cells (CTCs), which are likely to stem from bone metastases, can be isolated from blood. The goals of this exploratory study were to establish a sensitive methodology to analyze gene expression in BMBx and CTCs, and to determine whether the presence or absence of detectable gene expression is concordant in matching samples from mCRPC patients. METHODS: The CellSearch(®) platform was used to enrich and enumerate CTCs. Low numbers of PC3 prostate cancer (PCa) cells were spiked into normal blood to assess cell recovery rate. RNA extracted from recovered PC3 cells was amplified using an Eberwine-based procedure to obtain antisense mRNA (aRNA), and assess the linearity of the RNA amplification method. In this pilot study, RNAs extracted from CTCs and PCa cells microdissected from formalin-fixed paraffin-embedded BMBx, were amplified to obtain aRNA and assess the expression of eight genes functionally relevant to PCa bone metastasis using RT-PCR. RESULTS: RNAs were successfully extracted from as few as 1-5 PCa cells in blood samples. The relative expression levels of reference genes were maintained after RNA amplification. The integrity of the amplified RNA was also demonstrated by RT-PCR analysis using primer sets that target the 5'-end, middle, and 3'-end of reference mRNA. We found that in 21 out of 28 comparisons, the presence or absence of detectable gene expression in CTCs and PCa cells microdissected from single bone lesions of the same patients was concordant. CONCLUSIONS: This exploratory analysis suggests that aRNA amplification through in vitro transcription may be useful as a method to detect gene expression in small numbers of CTCs and tumor cells microdissected from bone metastatic lesions. In some cases, gene expression in CTCs and BMBxs was not concordant, raising questions about using CTC gene expression to make clinical decisions.


Subject(s)
Bone Neoplasms/genetics , Bone Neoplasms/secondary , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Neoplastic Cells, Circulating/pathology , Prostatic Neoplasms, Castration-Resistant/pathology , Aged , Aged, 80 and over , Biopsy , Bone Marrow/pathology , Cell Line, Tumor , Humans , Male , Middle Aged , Prostatic Neoplasms, Castration-Resistant/genetics , RNA, Antisense/genetics , RNA, Antisense/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Reproducibility of Results
16.
Prostate ; 76(6): 534-42, 2016 May.
Article in English | MEDLINE | ID: mdl-26732854

ABSTRACT

PURPOSE: To determine the functional relationship between androgen receptor (AR) and PDGF D as it relates to the radiation response of PTEN-null prostate cancer (PCa) cells and the effect of enzalutamide on these interactions. METHODS AND MATERIALS: Using murine PTEN-null prostate epithelial cell line and human prostate carcinoma LNCaP (PTEN-mutant) models, nuclear and cytosolic AR levels were determined by immunoblot analysis and the transcriptional activity of nuclear AR was assessed by RT-PCR analysis of its target genes with or without irradiation. Cell survival was evaluated by clonogenic assay or sulforhodamine B (SRB) assay upon irradiation in the absence or presence of the AR antagonist enzalutamide. RESULTS: PTEN loss resulted in upregulation of AR expression in a PDGF-D dependent manner and irradiation selectively increased the nuclear AR protein level and its activity in a murine cell model. When the functional significance of AR in cell survival was tested, treatment with enzalutamide resulted in radiosensitization of human LNCaP cells. Similarly to the murine model, PDGF-D overexpression increased the nuclear AR level and its transcriptional activity in LNCaP cells. PDGF-D over-expression was associated with radioresistance and enzalutamide treatment effectively reversed PDGF-D-mediated radioresistance in LNCaP cells. CONCLUSIONS: We have demonstrated that AR, a target of the PTEN and PDGF D-downstream signaling program, contributes to radiation resistance in human PCa cells. In addition, this study suggests that anti-androgens such as enzalutamide may serve as radiation sensitizers for the treatment of PCa patients, particularly so in patients with loss of PTEN or overexpression of PDGF-D.


Subject(s)
Lymphokines/metabolism , Phenylthiohydantoin/analogs & derivatives , Platelet-Derived Growth Factor/metabolism , Prostatic Neoplasms , Receptors, Androgen/metabolism , Signal Transduction , Animals , Antineoplastic Agents/pharmacology , Benzamides , Cell Line, Tumor , Humans , Male , Mice , Nitriles , PTEN Phosphohydrolase/metabolism , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Signal Transduction/drug effects , Signal Transduction/radiation effects , Tumor Suppressor Proteins/metabolism
17.
Int J Cancer ; 138(5): 1232-45, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26413934

ABSTRACT

Elevated expression and aberrant activation of Ras have been implicated in breast cancer aggressiveness. H-Ras, but not N-Ras, induces breast cell invasion. A crucial link between lipid rafts and H-Ras function has been suggested. This study sought to identify the lipid raft protein(s) responsible for H-Ras-induced tumorigenicity and invasiveness of breast cancer. We conducted a comparative proteomic analysis of lipid raft proteins from invasive MCF10A human breast epithelial cells engineered to express active H-Ras and non-invasive cells expressing active N-Ras. Here, we identified a lipid raft protein flotillin-1 as an important regulator of H-Ras activation and breast cell invasion. Flotillin-1 was required for epidermal growth factor-induced activation of H-Ras, but not that of N-Ras, in MDA-MB-231 triple-negative breast cancer (TNBC) cells. Flotillin-1 knockdown inhibited the invasiveness of MDA-MB-231 and Hs578T TNBC cells in vitro and in vivo. In xenograft mouse tumor models of these TNBC cell lines, we showed that flotillin-1 played a critical role in tumor growth. Using human breast cancer samples, we provided clinical evidence for the metastatic potential of flotillin-1. Membrane staining of flotillin-1 was positively correlated with metastatic spread (p = 0.013) and inversely correlated with patient disease-free survival rates (p = 0.005). Expression of flotillin-1 was associated with H-Ras in breast cancer, especially in TNBC (p < 0.001). Our findings provide insight into the molecular basis of Ras isoform-specific interplay with flotillin-1, leading to tumorigenicity and aggressiveness of breast cancer.


Subject(s)
Breast Neoplasms/pathology , Genes, ras , Membrane Proteins/physiology , Adult , Aged , Animals , Breast Neoplasms/mortality , Cell Line, Tumor , Cell Movement , ErbB Receptors/metabolism , Female , Humans , Mice , Mice, Inbred BALB C , Middle Aged , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinases/physiology , Phosphorylation , Proteomics , Proto-Oncogene Proteins c-akt/physiology , Signal Transduction
18.
Am J Physiol Cell Physiol ; 310(4): C293-304, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26157007

ABSTRACT

Activation of ß-platelet-derived growth factor receptor (ß-PDGFR) is associated with prostate cancer (PCa) progression and recurrence after prostatectomy. Analysis of the ß-PDGFR ligands in PCa revealed association between PDGF-D expression and Gleason score as well as tumor stage. During the course of studying the functional consequences of PDGF ligand-specific ß-PDGFR signaling in PCa, we discovered a novel function of PDGF-D for activation/shedding of the serine protease matriptase leading to cell invasion, migration, and tumorigenesis. The present study showed that PDGF-D, not PDGF-B, induces extracellular acidification, which correlates with increased matriptase activation. A cDNA microarray analysis revealed that PDGF-D/ß-PDGFR signaling upregulates expression of the acidosis regulator carbonic anhydrase IX (CAIX), a classic target of the transcriptional factor hypoxia-inducible factor-1α (HIF-1α). Cellular fractionation displayed a strong HIF-1α nuclear localization in PDGF-D-expressing cells. Treatment of vector control or PDGF-B-expressing cells with the HIF-1α activator CoCl2 led to increased CAIX expression accompanied by extracellular acidosis and matriptase activation. Furthermore, the analysis of the CAFTD cell lines, variants of the BPH-1 transformation model, showed that increased PDGF-D expression is associated with enhanced HIF-1α activity, CAIX induction, cellular acidosis, and matriptase shedding. Importantly, shRNA-mediated knockdown of CAIX expression effectively reversed extracellular acidosis and matriptase activation in PDGF-D-transfected BPH-1 cells and in CAFTD variants that express endogenous PDGF-D at a high level. Taken together, these novel findings reveal a new paradigm in matriptase activation involving PDGF-D-specific signal transduction leading to extracellular acidosis.


Subject(s)
Lymphokines/metabolism , Platelet-Derived Growth Factor/metabolism , Prostatic Neoplasms/enzymology , Serine Endopeptidases/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Autocrine Communication , Carbonic Anhydrase IX , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , Cell Line, Tumor , Enzyme Activation , Gene Expression Regulation , Humans , Hydrogen-Ion Concentration , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lymphokines/genetics , Male , Platelet-Derived Growth Factor/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA Interference , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Serine Endopeptidases/genetics , Signal Transduction , Time Factors , Transfection
19.
J Biol Chem ; 290(14): 9162-70, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25678707

ABSTRACT

The oncogenic roles of PDGF-D and its proteolytic activator, matriptase, have been strongly implicated in human prostate cancer. Latent full-length PDGF-D (FL-D) consists of a CUB domain, a growth factor domain (GFD), and the hinge region in between. Matriptase processes the FL-D dimer into a GFD dimer (GFD-D) in a stepwise manner, involving generation of a hemidimer (HD), an intermediate product containing one FL-D subunit and one GFD subunit. Although the HD is a pro-growth factor that can be processed into the GFD-D by matriptase, the HD can also act as a dominant-negative ligand that prevents PDGF-B-mediated ß-PDGF receptor activation in fibroblasts. The active GFD-D can be further cleaved into a smaller and yet inactive form if matriptase-mediated proteolysis persists. Through mutagenesis and functional analyses, we found that the R(340)R(341)GR(343)A (P4-P1/P1') motif within the GFD is the matriptase cleavage site through which matriptase can deactivate PDGF-D. Comparative sequence analysis based on the published crystal structure of PDGF-B predicted that the matriptase cleavage site R(340)R(341)GR(343)A is within loop III of the GFD, a critical structural element for its binding with the ß-PDGF receptor. Interestingly, we also found that matriptase processing regulates the deposition of PDGF-D dimer species into the extracellular matrix (ECM) with increased binding from the FL-D dimer, to the HD, and to the GFD-D. Furthermore, we provide evidence that R(340)R(341)GR(343)A within the GFD is critical for PDGF-D deposition and binding to the ECM. In this study, we report a structural element crucial for the biological function and ECM deposition of PDGF-D and provide molecular insight into the dynamic functional interplay between the serine protease matriptase and PDGF-D.


Subject(s)
Platelet-Derived Growth Factor/metabolism , Protein Isoforms/metabolism , Serine Endopeptidases/metabolism , Humans , Proteolysis
20.
Int J Cancer ; 136(6): E508-20, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25155634

ABSTRACT

The epithelial-to-mesenchymal transition (EMT) process allows carcinoma cells to dissociate from the primary tumor thereby facilitating tumor cell invasion and metastasis. Ras-dependent hyperactive signaling is commonly associated with tumorigenesis, invasion, EMT, and metastasis. However, the downstream effectors by which Ras regulates EMT remain ill defined. In this study, we show that the H-Ras pathway leads to mesenchymal-like phenotypic changes in human breast epithelial cells by controlling the ZEB1/microRNA-200c axis. Moreover, H-Ras suppresses the expression of the discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine kinase, via ZEB1, thus identifying ZEB1 as a novel transcriptional repressor of DDR1. Mutation studies on the putative promoter of the DDR1 gene revealed that bipartite Z- and E-box elements play a key role in transcriptional repression of DDR1 in Hs578T and MDA-MB-231 breast carcinoma cell lines by ZEB1. Furthermore, we found an inverse correlation between ZEB1 and DDR1 expression in various cancer cell lines and in human breast carcinoma tissues. Consistently, overexpression of DDR1 reduced the invasive phenotype of mesenchymal-like triple-negative breast cancer cells in 3D cultures and in vivo. Thus, ZEB1's role in maintenance of EMT in breast carcinoma cells is mediated in part by its ability to suppress DDR1 expression and consequently contribute to the activation of the invasive phenotype. Taken together, our results unveil a novel H-Ras/ZEB1/DDR1 network that contributes to breast cancer progression in triple-negative breast cancers.


Subject(s)
Breast/pathology , Epithelial-Mesenchymal Transition , Genes, ras/physiology , Homeodomain Proteins/physiology , Receptor Protein-Tyrosine Kinases/physiology , Receptors, Mitogen/physiology , Transcription Factors/physiology , Cell Line, Tumor , Cytoskeleton/physiology , Discoidin Domain Receptors , Epithelial Cells/pathology , Female , Humans , MicroRNAs/physiology , Morphogenesis , Zinc Finger E-box-Binding Homeobox 1
SELECTION OF CITATIONS
SEARCH DETAIL
...