Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
J Med Food ; 27(6): 521-532, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38651680

ABSTRACT

To probe the functions of Aster glehni (AG) extract containing various caffeoylquinic acids on dyslipidemia, obesity, and skeletal muscle-related diseases focused on the roles of skeletal muscle, we measured the levels of biomarkers involved in oxidative phosphorylation and type change of skeletal muscle in C2C12 cells and skeletal muscle tissues from apolipoprotein E knockout (ApoE KO) mice. After AG extract treatment in cell and animal experiments, western blotting, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were used to estimate the levels of proteins that participated in skeletal muscle type change and oxidative phosphorylation. AG extract elevated protein expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), phosphorylated 5'-AMP-activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor beta/delta (PPARß/δ), myoblast determination protein 1 (MyoD), and myoglobin in skeletal muscle tissues. Furthermore, it elevated the ATP concentration. However, protein expression of myostatin was decreased by AG treatment. In C2C12 cells, increments of MyoD, myoglobin, myosin, ATP-producing pathway, and differentiation degree by AG were dependent on PPARß/δ and caffeoylquinic acids. AG extract can contribute to the amelioration of skeletal muscle inactivity and sarcopenia through myogenesis in skeletal muscle tissues from ApoE KO mice, and function of AG extract may be dependent on PPARß/δ, and the main functional constituents of AG are trans-5-O-caffeoylquinic acid and 3,5-O-dicaffeoylquinic acid. In addition, in skeletal muscle, AG has potent efficacies against dyslipidemia and obesity through the increase of the type 1 muscle fiber content to produce more ATP by oxidative phosphorylation in skeletal muscle tissues from ApoE KO mice.


Subject(s)
Mice, Knockout , Muscle Development , Muscle, Skeletal , PPAR delta , PPAR-beta , Plant Extracts , Quinic Acid , Animals , Mice , Quinic Acid/analogs & derivatives , Quinic Acid/pharmacology , Plant Extracts/pharmacology , PPAR-beta/metabolism , PPAR-beta/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle Development/drug effects , PPAR delta/metabolism , PPAR delta/genetics , Male , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Humans , MyoD Protein/metabolism , MyoD Protein/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice, Inbred C57BL , AMP-Activated Protein Kinases/metabolism
2.
Molecules ; 29(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38257267

ABSTRACT

In our search for bioactive components, various chromatographic separations of the organic fractions from Filipendula glaberrima leaves led to the isolation of a new ellagitannin and a triterpenoid, along with 26 known compounds. The structures of the isolates were determined based on their spectroscopic properties and chemical evidence, which were then evaluated for their antioxidant activities, inhibitory activities on 3-hydroxy-3-methylglutaryl-coenzyme A reductase, and foam cell formation in THP-1 cells to prevent atherosclerosis. Rugosin B methyl ester (1) showed the best HMG-CoA reductase inhibition and significantly reduced ox-low-density lipoprotein-induced THP-1 macrophage-derived foam cell formation at 25 µM. In addition, no cytotoxicity was observed in THP-1 cells at 50 µg/mL of all extracts in the macrophage foam cell formation assay. Therefore, F. glaberrima extract containing 1 is promising in the development of dietary supplements due to its potential behavior as a novel source of nutrients for preventing and treating atherosclerosis.


Subject(s)
Acyl Coenzyme A , Atherosclerosis , Filipendula , Foam Cells , Antioxidants/pharmacology , Hydroxymethylglutaryl-CoA-Reductases, NADP-dependent , Macrophages , Atherosclerosis/drug therapy , Plant Leaves
3.
Food Funct ; 14(15): 6957-6968, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37435675

ABSTRACT

Ulcerative colitis (UC) is a chronic disease of the colon characterized by mucosal damage and relapsing gastrointestinal inflammation. Hydrangea serrata (Thunb.) Ser. and its bioactive compound, hydrangenol, are reported to have anti-inflammatory effects, but few studies have investigated the effects of hydrangenol in colitis. In the present study, we evaluated for the first time the anti-colitic effects and molecular mechanisms of hydrangenol in a dextran sodium sulfate (DSS)-induced mouse colitis model. To investigate the anti-colitic effects of hydrangenol, DSS-induced colitis mice, HT-29 colonic epithelial cells treated with supernatant from LPS-inflamed THP-1 macrophages, and LPS-induced RAW264.7 macrophages were used. In addition, to clarify the molecular mechanisms of this study, quantitative real time-PCR, western blot analysis, TUNEL assay, and annexin V-FITC/PI double staining analysis were conducted. Oral administration of hydrangenol (15 or 30 mg kg-1) significantly alleviated DSS-induced colitis by preventing DAI scores, shortening colon length, and colonic structural damage. F4/80+ macrophage numbers in mesenteric lymph nodes and macrophage infiltration in colonic tissues were significantly suppressed following hydrangenol treatment in DSS-exposed mice. Hydrangenol significantly attenuated DSS-induced destruction of the colonic epithelial cell layer through regulation of pro-caspase-3, occludin, and claudin-1 protein expression. Moreover, hydrangenol ameliorated abnormal tight junction protein expression and apoptosis in HT-29 colonic epithelial cells treated with supernatant from LPS-inflamed THP-1 macrophages. Hydrangenol suppressed the expression of pro-inflammatory mediators, such as iNOS, COX-2, TNF-α, IL-6, and IL-1ß through NF-κB, AP-1, and STAT1/3 inactivation in DSS-induced colon tissue and LPS-induced RAW264.7 macrophages. Taken together, our findings suggest that hydrangenol recovers the tight junction proteins and down-regulates the expression of the pro-inflammatory mediators by interfering with the macrophage infiltration in DSS-induced colitis. Our study provides compelling evidence that hydrangenol may be a candidate for inflammatory bowel disease therapy.


Subject(s)
Colitis, Ulcerative , Colitis , Hydrangea , Animals , Mice , Dextran Sulfate/adverse effects , Lipopolysaccharides/pharmacology , Signal Transduction , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Colitis, Ulcerative/chemically induced , Colon/metabolism , Macrophages , NF-kappa B/genetics , NF-kappa B/metabolism , Inflammation Mediators/metabolism , Disease Models, Animal , Mice, Inbred C57BL
4.
Plants (Basel) ; 10(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34834649

ABSTRACT

Aster glehni F. Schmidt (AG), is a natural product known to have anti-obesity effects, but the mechanism underlying these effects is not well documented. We hypothesized that AG may have inhibitory effects on enzymes related to lipid accumulation. Herein, AG fractions were tested against HMG-CoA reductase (HMGR) and fatty acid synthase (FAS), two important enzymes involved in cholesterol and fatty acid synthesis, respectively. We found that dicaffeoylquinic acid (DCQA) methyl esters present in AG are largely responsible for the inhibition of HMGR and FAS. Since free DCQA is a major form present in AG, we demonstrated that a simple methylation of the AG extract could increase the overall inhibitory effects against those enzymes. Through this simple process, we were able to increase the inhibitory effect by 150%. We believe that our processed AG effectively modulates the HMGR and FAS activities, providing promising therapeutic potential for cholesterol- and lipid-lowering effects.

6.
Nutrients ; 11(10)2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31581754

ABSTRACT

Our previous study showed that hydrangenol isolated from Hydrangea serrata leaves exerts antiphotoaging activity in vitro. In this study, we determined its antiphotoaging effect in UVB-irradiated HR-1 hairless mice. We evaluated wrinkle formation, skin thickness, histological characteristics, and mRNA and protein expression using qRT-PCR and Western blot analysis in dorsal skins. Hydrangenol mitigated wrinkle formation, dorsal thickness, dehydration, and collagen degradation. Hydrangenol increased the expression of involucrin, filaggrin, and aquaporin-3 (AQP3) as well as hyaluronic acid (HA) production via hyaluronidase (HYAL)-1/-2 downregulation. Consistent with the recovery of collagen composition, the expression of Pro-COL1A1 was increased by hydrangenol. Matrix metalloproteinase (MMP)-1/-3, cyclooxygenase-2 (COX-2), and interleukin-6 (IL-6) expression was reduced by hydrangenol. Hydrangenol attenuated the phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK and p38, activator protein 1 (AP-1) subunit, and signal transduction and activation of transcription 1 (STAT1). Hydrangenol upregulated the expression of nuclear factor-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO-1), glutamate cysteine ligase modifier subunit (GCLM), and glutamate cysteine ligase catalysis subunit (GCLC). Taken together, our data suggest that hydrangenol can prevent wrinkle formation by reducing MMP and inflammatory cytokine levels and increasing the expression of moisturizing factors and antioxidant genes.


Subject(s)
Dermatologic Agents/pharmacology , Hydrangea/chemistry , Isocoumarins/pharmacology , Plant Extracts/pharmacology , Plant Leaves/chemistry , Skin Aging/drug effects , Skin/drug effects , Ultraviolet Rays/adverse effects , Water/metabolism , Animals , Antioxidants/metabolism , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Cytokines/metabolism , Dermatologic Agents/isolation & purification , Inflammation Mediators/metabolism , Isocoumarins/isolation & purification , Male , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 3/metabolism , Mice, Hairless , Plant Extracts/isolation & purification , Proteolysis , Signal Transduction , Skin/metabolism , Skin/pathology , Skin/radiation effects , Skin Aging/radiation effects
7.
Biol Pharm Bull ; 42(3): 424-431, 2019.
Article in English | MEDLINE | ID: mdl-30828074

ABSTRACT

Hydrangea serrata (THUNB.) SER. (Hydrangeaceae) leaves have been used as herbal teas in Korea and Japan. The objective of this study was to identify anti-photoaging compounds in aqueous EtOH extract prepared from leaves of H. serrata and their effects on UVB-irradiated Hs68 human foreskin fibroblasts. Phytochemical study on H. serrata leaves led to the isolation and characterization of ten compounds: hydrangenol, thunberginol A, thunberginol C, hydrangenoside A, hydrangenoside C, cudrabibenzyl A, 2,3,4'-trihydroxystilbene, thunberginol F, quercetin 3-O-ß-D-xylopyranosyl (1-2)-ß-D-galactopyranoside, quercetin 3-O-ß-D-xylopyranosyl (1-2)-ß-D-glucopyranoside. Cudrabibenzyl A, 2,3,4'-trihydroxystilbene, quercetin 3-O-ß-D-xylopyranosyl (1-2)-ß-D-galactopyranoside, quercetin 3-O-ß-D-xylopyranosyl (1-2)-ß-D-glucopyranoside were firstly isolated from H. serrata. We estimated the effects of 10 compounds on cell viability and production of pro-collagen Type I, matrix metalloproteinase (MMP)-1, and hyaluronic acid (HA) after UVB irradiation. Of these compounds, hydrangenol showed potent preventive activities against reduced cell viability and degradation of pro-collagen Type I in UVB-irradiated Hs68 fibroblasts. Hydrangenol had outstanding inductive activities on HA production. It suppressed mRNA expression levels of MMP-1, MMP-3, hyaluronidase (HYAL)-1, HYAL-2, cyclooxygenase-2 (COX-2), interleukin (IL)-6, IL-8, and IL-1ß in UVB-irradiated Hs68 fibroblasts. When Hs68 fibroblasts were exposed to hydrangenol after UVB irradiation, UVB-induced reactive oxygen species (ROS) production was suppressed. Hydrangenol also inhibited the activation of activator protein-1 (AP-1) and signal transduction and activation of transcription 1 (STAT-1) by downregulating phosphorylation of p38 and extracellular signal-regulated kinase (ERK). Our data indicate that hydrangenol isolated from H. serrata leaves has potential protective effects on UVB-induced skin photoaging.


Subject(s)
Fibroblasts/drug effects , Fibroblasts/radiation effects , Plant Extracts/pharmacology , Plant Leaves/chemistry , Ultraviolet Rays/adverse effects , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Humans , Hydrangea , Plant Extracts/chemistry , Skin Aging
8.
Nutrients ; 11(3)2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30823635

ABSTRACT

Skin photoaging is mainly caused by exposure to ultraviolet (UV) light, which increases expressions of matrix metalloproteinases (MMPs) and destroys collagen fibers, consequently inducing wrinkle formation. Nutritional factors have received scientific attention for use as agents for normal skin functions. The aim of this study was to investigate the effect of hot water extracts from the leaves of Hydrangea serrata (Thunb.) Ser. (WHS) against ultraviolet B (UVB)-induced skin photoaging and to elucidate the underlying molecular mechanisms in human foreskin fibroblasts (Hs68) and HR-1 hairless mice. WHS recovered UVB-reduced cell viability and ameliorated oxidative stress by inhibiting intracellular reactive oxygen species (ROS) generation in Hs68 cells. WHS rescued UVB-induced collagen degradation by suppressing MMP expression, and reduced the mRNA levels of inflammatory cytokines. These anti-photoaging activities of WHS were associated with inhibition of the activator protein 1 (AP-1), signal transduction and activation of transcription 1 (STAT1), and mitogen-activated protein kinase (MAPK) signaling pathways. Oral administration of WHS effectively alleviated dorsal skin from wrinkle formation, epidermal thickening, collagen degradation, and skin dehydration in HR-1 hairless mice exposed to UVB. Notably, WHS suppressed UVB activation of the AP-1 and MAPK signaling pathways in dorsal mouse skin tissues. Taken together, our data indicate that WHS prevents UVB-induced skin damage due to collagen degradation and MMP activation via inactivation of MAPK/AP-1 signaling pathway.


Subject(s)
Hydrangea , MAP Kinase Signaling System/drug effects , Plant Extracts/pharmacology , Skin Aging/drug effects , Transcription Factor AP-1/drug effects , Animals , Cell Survival/drug effects , Fibroblasts/drug effects , Humans , Mice , Mice, Hairless , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Skin/cytology , Ultraviolet Rays/adverse effects
9.
Food Sci Biotechnol ; 27(5): 1439-1444, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30319854

ABSTRACT

In this study, synergistic hypoudpricemic activities between ethanol extract of Aster glehni (AG) and vitamin B6 were investigated in vitro and in vivo. Xanthine oxidase inhibitory activities in the different parts, leaf, stem, and flower, during spring and autumn were compared. In addition, to improve hypouricemic activity, two chemicals (AG extract and vitamins) were mixed and measured inhibitory activity of xanthine oxidase. As a result, autumn leaf AG extracts showed the most effective xanthine oxidase inhibitory activity and we named autumn leaf AG extracts as AG-D006. In synergistic study, AG-D006 with vitamin B6 showed significantly increased inhibitory activity on xanthine oxidase. AG-D006 with vitamin B6 also showed significantly reduced uric acid level in hyperuricemic rats in vivo. In conclusion, AG-D006 with vitamin B6 might be used functional foods in reducing serum uric acid level in gout.

10.
Article in English | MEDLINE | ID: mdl-30622619

ABSTRACT

Aster glehni (AG) has been used in cooking and as a medicine to treat various diseases for over hundreds of years in Korea. To speculate the protective effects of AG on skin barrier, we estimated the protein levels of biomarkers related to skin barrier protection in human keratinocytes, HaCaT cells treated with sodium dodecyl sulfate (SDS), or 2,4-dinitrochlorobenzene (DNCB). The protein levels for keratin, involucrin, defensin, tumor necrosis factor alpha (TNFα), peroxisome proliferator-activated receptor delta (PPARδ), 5' adenosine monophosphate-activated protein kinase (AMPK), serine palmitoyltransferase long chain base subunit 2 (SPTLC2), and transient receptor potential cation channel subfamily V member 4 (TRPV4) were evaluated using western blotting or immunocytochemistry in HaCaT cells. AG extract increased the protein levels of PPARδ, phosphorylated AMPK, SPTLC2, keratin, involucrin, and defensin compared to the SDS or DNCB control group. However, TNFα expression increased by SDS or DNCB was decreased with AG extract. The order of action of each regulatory biomarker in AG pathway was identified TRPV4→PPARδ→AMPK from antagonist and siRNA treatment studies. AG can ameliorate the injury of keratinocytes caused by SDS or DNCB through the sequential regulation of TRPV4→PPARδ→AMPK pathway.

11.
PPAR Res ; 2017: 3912567, 2017.
Article in English | MEDLINE | ID: mdl-29201040

ABSTRACT

Aster glehni is well known for its therapeutic properties. This study was performed to investigate the effects of A. glehni on nonalcoholic fatty liver disease (NAFLD) in atherosclerotic condition, by determining the levels of biomarkers related to lipid metabolism and inflammation in serum, liver, and adipose tissue. Body and abdominal adipose tissue weights and serum triglyceride level decreased in all groups treated with A. glehni. Serum adiponectin concentration and protein levels of peroxisome proliferator-activated receptor δ, 5' adenosine monophosphate-activated protein kinase, acetyl-CoA carboxylase, superoxide dismutase, and PPARγ coactivator 1-alpha in liver tissues increased in the groups treated with A. glehni. Conversely, protein levels of ATP citrate lyase, fatty acid synthase, tumor necrosis factor α, and 3-hydroxy-3-methylglutaryl-CoA reductase and the concentrations of interleukin 6 and reactive oxygen species decreased upon A. glehni. Triglyceride concentration in the liver was lower in mice treated with A. glehni than in control mice. Lipid accumulation in HepG2 and 3T3-L1 cells decreased upon A. glehni treatment; this effect was suppressed in the presence of the PPARδ antagonist, GSK0660. Our findings suggest that A. glehni extracts may ameliorate NAFLD through regulation of PPARδ, adiponectin, and the related subgenes.

12.
Bioorg Med Chem Lett ; 27(23): 5245-5251, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29102229

ABSTRACT

Seeds of Carthamus tinctorius L. (Compositae) have been used in Korean traditional medicines for the treatment of cardiovascular and bone diseases. In this study, we investigated the anti-inflammatory effects of known serotonin derivatives (1-9) isolated from the ethyl acetate (EtOAc) soluble fraction from the seeds of C. tinctorius. Compound 2, identified as moschamine, most potently inhibited lipopolysaccharide (LPS)-induced production of prostaglandin E2 (PGE2) and nitric oxide (NO) in RAW 264.7 macrophages. Moschamine concentration-dependently inhibited LPS-induced PGE2 and NO production in RAW 264.7 macrophages. Consistent with these findings, moschamine suppressed the protein and mRNA levels of cyclooxygenase-2 (COX-2), microsomal prostaglandin E2 synthase (mPGES)-1, and inducible NO synthase (iNOS), interleukin (IL)-6, and IL-1ß. In addition, pretreatment of moschamine significantly inhibited LPS-stimulated the transcriptional activity of activator protein-1 (AP-1) and the phosphorylation of signal transducer and activator of transcription (STAT)1/3 in RAW 264.7 macrophages. Moreover, moschamine inhibited LPS-induced the phosphorylation of p38 mitogen-activated protein kinase (p38) and extracellular signal-regulated kinase (ERK), but it had no effect on c-Jun N-terminal kinase (JNK). These results suggest that the mechanism of anti-inflammatory activity of moschamine is associated with the downregulation of COX-2, mPGES-1, iNOS, IL-6, and IL-1ß expression through the suppression of AP-1 and STAT1/3 activation in LPS-induced RAW 264.7 macrophages.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Carthamus tinctorius/chemistry , Inflammation Mediators/antagonists & inhibitors , Lipopolysaccharides/antagonists & inhibitors , Macrophages/drug effects , Serotonin/analogs & derivatives , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Dose-Response Relationship, Drug , Inflammation Mediators/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mice , Molecular Structure , RAW 264.7 Cells , STAT1 Transcription Factor/antagonists & inhibitors , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Serotonin/chemistry , Serotonin/isolation & purification , Serotonin/pharmacology , Structure-Activity Relationship , Transcription Factor AP-1/antagonists & inhibitors , Transcription Factor AP-1/metabolism
13.
Bioorg Med Chem ; 25(17): 4656-4664, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28720332

ABSTRACT

As a bioisosteric strategy to overcome the poor metabolic stability of lead compound KYS05090S, a series of new fluoro-substituted 3,4-dihydroquinazoline derivatives was prepared and evaluated for T-type calcium channel (Cav3.2) block, cytotoxic effects and liver microsomal stability. Among them, compound 8h (KCP10068F) containing 4-fluorobenzyl amide and 4-cyclohexylphenyl ring potently blocked Cav3.2 currents (>90% inhibition) at 10µM concentration and exhibited cytotoxic effect (IC50=5.9µM) in A549 non-small cell lung cancer cells that was comparable to KYS05090S. Furthermore, 8h showed approximately a 2-fold increase in liver metabolic stability in rat and human species compared to KYS05090S. Based on these overall results, 8h (KCP10068F) may therefore represent a good backup compound for KYS05090S for further biological investigations as novel cytotoxic agent. In addition, compound 8g (KCP10067F) was found to partially protect from inflammatory pain via a blockade of Cav3.2 channels.


Subject(s)
Analgesics/chemical synthesis , Calcium Channel Blockers/chemical synthesis , Quinazolines/chemistry , Quinidine/analogs & derivatives , A549 Cells , Analgesics/chemistry , Analgesics/toxicity , Animals , Calcium Channel Blockers/chemistry , Calcium Channel Blockers/toxicity , Calcium Channels, T-Type/chemistry , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/metabolism , Cell Survival/drug effects , Drug Stability , Fluorine/chemistry , HEK293 Cells , Humans , Inhibitory Concentration 50 , Microsomes, Liver/metabolism , Patch-Clamp Techniques , Quinazolines/chemical synthesis , Quinazolines/toxicity , Quinidine/chemical synthesis , Quinidine/chemistry , Quinidine/toxicity , Rats
14.
Bioorg Med Chem Lett ; 27(5): 1179-1185, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28189420

ABSTRACT

A series of 3,4-dihydroquinazoline derivatives consisting of the selected compounds from our chemical library on the diversity basis and the new synthetic compounds were in vitro tested for their inhibitory activities for both acetylcholinesterase (AChE, from electric eel) and butyrylcholinesterase (BChE, from equine serum) enzymes. It was discovered that most of the compounds displayed weak AChE and strong BuChE inhibitory activities. In particular, compound 8b and 8d were the most active compounds in the series against BChE with IC50 values of 45nM and 62nM, as well as 146- and 161-fold higher affinity to BChE, respectively. To understand the excellent activity of these compounds, molecular docking simulations were performed to get better insights into the mechanism of binding of 3,4-dihydroquinazoline derivatives. As expected, compound 8b and 8d bind to both catalytic anionic site (CAS) and peripheral site (PS) of BChE with better interaction energy values than AChE, in agreement with our experimental data. Furthermore, the non-competitive/mixed-type inhibitions of both compounds further confirmed their dual binding nature in kinetic studies.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Quinazolines/pharmacology , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/therapeutic use , Humans , Molecular Docking Simulation , Quinazolines/therapeutic use
15.
Bioorg Med Chem Lett ; 26(21): 5193-5197, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27720548

ABSTRACT

In our previous research, a novel series of phenylsulfonyl hydrazide derivatives were found to reduce LPS-induced PGE2 levels in RAW 264.7 macrophage cells via an inhibition of mPGES-1 enzyme. Recently, it was found that a regioisomeric mixture of phenylsulfonyl hydrazide was formed depending on the reaction conditions, which favor either of two regioisomers. One regioisomer corresponds to a kinetic product (7a-7c) and the other regioisomer corresponds to a thermodynamic product (8a-8c). Among them, the structure of kinetic product 7b was confirmed by measuring single X-ray crystallography. In vitro PGE2 assay studies showed that the kinetic product (7a and 7b; IC50=0.69 and 0.55µM against PGE2) is generally more potent than the thermodynamic product (8a and 8b; IC50=>10 and 0.79µM against PGE2). A molecular docking study also exhibited that the kinetic product (7a) has a higher MolDock Score (-147.4) than that of 8a (-142.4), which is consistent with the PGE2 assay results. A new potent phenylsulfonyl hydrazide (7d; IC50=0.06µM against PGE2) without affecting COX-1 and COX-2 enzyme activities was identified based on these overall results.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Hydrazines/chemical synthesis , Hydrazines/pharmacology , Sulfhydryl Compounds/chemical synthesis , Sulfhydryl Compounds/pharmacology , Animals , Cell Line , Crystallography, X-Ray , Dinoprostone/antagonists & inhibitors , Hydrazines/chemistry , Mice , Molecular Dynamics Simulation , Molecular Structure , Proton Magnetic Resonance Spectroscopy , Structure-Activity Relationship , Sulfhydryl Compounds/chemistry
16.
Bioorg Med Chem Lett ; 26(19): 4592-4598, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27590705

ABSTRACT

Previously, we found that ethyl acetate extract fraction of Aster glehni exhibited anti-hyperuricemic effects in animal models and also five new caffeoylglucoside derivatives were isolated from this fraction. In this work, we evaluated the anti-inflammatory effects of these caffeoylglucoside derivatives and found that 6'-O-caffeoyldihydrosyringin (2, CDS) most potently inhibited the LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 macrophages. In addition, CDS was found to concentration-dependently reduce the production of NO, PGE2, and the pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1ß (IL-1ß) induced by LPS in macrophages. Consistent with these observations, CDS concentration-dependently inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxidase-2 (COX-2) expression at the protein level and also iNOS, COX-2, TNF-α, and IL-6, IL-1ß expression at the mRNA level. Furthermore, CDS suppressed the LPS-induced transcriptional activities of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) as well as the phosphorylation of p65 and c-Fos. Taken together, these results suggest that the anti-inflammatory effect of CDS is associated with the downregulation of iNOS, COX-2, TNF-α, IL-1ß, and IL-6 expression via the negative regulation of NF-κB and AP-1 activation in LPS-induced RAW 264.7 macrophages.


Subject(s)
Aster Plant/chemistry , Cytokines/metabolism , Lipopolysaccharides/toxicity , Animals , Cell Line , Mice
17.
Nutr Res ; 36(4): 369-379, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27001282

ABSTRACT

Opuntia ficus-indica (L.) is a popular edible plant that possesses considerable nutritional value and exhibits diverse biological actions including anti-inflammatory and antidiabetic activities. In this study, we hypothesized that DWJ504, an extract of O ficus-indica seed, would ameliorate hepatic steatosis and inflammation by regulating hepatic de novo lipogenesis and macrophage polarization against experimental nonalcoholic steatohepatitis. Mice were fed a normal diet or a high-fat diet (HFD) for 10 weeks. DWJ504 (250, 500, and 1000 mg/kg) or vehicle (0.5% carboxymethyl cellulose) were orally administered for the last 4 weeks of the 10-week HFD feeding period. DWJ504 treatment remarkably attenuated HFD-induced increases in hepatic lipid content and hepatocellular damage. DWJ504 attenuated increases in sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein expression and a decrease in carnitine palmitoyltransferase 1A. Although DWJ504 augmented peroxisome proliferator-activated receptor α protein expression, it attenuated peroxisome proliferator-activated receptor γ expression. Moreover, DWJ504 promoted hepatic M2 macrophage polarization as indicated by attenuation of the M1 marker genes and enhancement of M2 marker genes. Finally, DWJ504 attenuated expression of toll-like receptor 4, nuclear factor κB, tumor necrosis factor α, interleukin 6, TIR-domain-containing adapter-inducing interferon ß, and interferon ß levels. Our results demonstrate that DWJ504 prevented intrahepatic lipid accumulation, induced M2 macrophage polarization, and suppressed the toll-like receptor 4-mediated inflammatory signaling pathway. Thus, DWJ504 has therapeutic potential in the prevention of nonalcoholic fatty liver disease.


Subject(s)
Diet, High-Fat , Macrophages/drug effects , Non-alcoholic Fatty Liver Disease/prevention & control , Opuntia , Plant Extracts/administration & dosage , Seeds/chemistry , Animals , Anti-Inflammatory Agents , Antioxidants/analysis , Biomarkers/blood , Gene Expression , Hypoglycemic Agents , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Macrophages/physiology , Mice
18.
Bioorg Med Chem Lett ; 26(3): 1073-1079, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26739776

ABSTRACT

As a result of our continuous research, new 3,4-dihydroquinazoline derivative containing ureido group, KCP10043F was synthesized and evaluated for T-type Ca(2+) channel (Cav3.1) blockade, cytotoxicity, and cell cycle arrest against human non-small cell lung (A549) cells. KCP10043F showed both weaker T-type Ca(2+) channel blocking activity and less cytotoxicity against A549 cells than parent compound KYS05090S [4-(benzylcarbamoylmethyl)-3-(4-biphenylyl)-2-(N,N',N'-trimethyl-1,5-pentanediamino)-3,4-dihydroquinazoline 2 hydrochloride], but it exhibited more potent G1-phase arrest than KYS05090S in A549 cells. This was found to be accompanied by the downregulations of cyclin-dependent kinase (CDK) 2, CDK4, CDK6, cyclin D2, cyclin D3, and cyclin E at the protein levels. However, p27(KIP1) as a CDK inhibitor was gradually upregulated at the protein levels and increased recruitment to CDK2, CDK4 and CDK6 after KCP10043F treatment. Based on the strong G1-phase cell cycle arrest of KCP10043F in A549 cells, the combination of KCP10043F with etoposide (or cisplatin) resulted in a synergistic cell death (combination index=0.2-0.8) via the induction of apoptosis compared with either agent alone. Taken together with these overall results and the favorable in vitro ADME (absorption, distribution, metabolism, and excretion) profiles of KCP10043F, therefore, it could be used as a potential agent for the combination therapy on human lung cancer.


Subject(s)
Antineoplastic Agents/chemistry , Calcium Channel Blockers/chemistry , Calcium Channels, T-Type/chemistry , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Calcium Channel Blockers/pharmacokinetics , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Dogs , Down-Regulation/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Half-Life , Humans , Mice , Microsomes, Liver/metabolism , Quinazolines/chemistry , Quinazolines/pharmacokinetics , Quinazolines/pharmacology , Rats , Up-Regulation/drug effects
19.
Bioorg Med Chem ; 23(15): 4970-4979, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26068017

ABSTRACT

Reactive oxygen species have been implicated in several diseases, particularly in ischemia-reperfusion injury. Quercetin 3-O-methyl ether has been reported to show potent antioxidant and neuroprotective activity against neuronal damage induced by reactive oxygen species. Several aminoethyl-substituted derivatives of quercetin 3-O-methyl ether have been synthesized to increase water solubility while retaining antioxidant and neuroprotective activity. Among such derivatives, compound 3a shows potent and well-balanced antioxidant activity in three types of cell-free assay systems and has in vivo neuroprotective effects on transient focal ischemic injury induced by the occlusion of the middle cerebral artery in rats.


Subject(s)
Antioxidants/chemical synthesis , Neuroprotective Agents/chemical synthesis , Quercetin/analogs & derivatives , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Brain/metabolism , Brain/pathology , Disease Models, Animal , Infarction, Middle Cerebral Artery/drug therapy , Lipid Peroxidation/drug effects , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Quercetin/chemistry , Quercetin/pharmacology , Quercetin/therapeutic use , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
20.
Phytochemistry ; 101: 83-90, 2014 May.
Article in English | MEDLINE | ID: mdl-24582277

ABSTRACT

An ethyl acetate fraction of the aerial parts of Caryopteris incana (Verbenaceae) showed potent cytoprotective effects against damage to HepG2 cells induced by tert-butylhydroperoxide (t-BHP). To search for hepatoprotective components of C. incana, various chromatographic separations of the ethyl acetate soluble fraction of C. incana led to isolation of three phenylpropanoid glycosides, 6‴-O-feruloylincanoside D, 6‴-O-sinapoylincanoside D and caryopteroside, and two iridoid glycosides, incanides A and B, together with 17 known compounds. Structures of these compounds were determined by spectroscopic analyses. The absolute stereochemistry of the caryopteroside was established with the help of circular dichroism data and in comparison with literature data. All isolated substances were determined for their cytoprotective effects against t-BHP-induced toxicity in HepG2 cells. Among the tested compounds, 6'-O-caffeoylacteoside exhibited the most potent cytoprotective activity with an IC50 value of 0.8±0.1 µM against t-BHP-induced toxicity. Structure-activity relationships of the assay results indicated an important role of the catechol moiety in phenylpropanoid, iridoid and flavonoid derivatives in eliciting cytoprotective effects.


Subject(s)
Plant Extracts/chemistry , Protective Agents/chemistry , Verbenaceae/chemistry , Cytoprotection , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Plant Components, Aerial/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Protective Agents/isolation & purification , Protective Agents/pharmacology , Stereoisomerism , Structure-Activity Relationship , tert-Butylhydroperoxide/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...